研究生: |
林鉍偉 Lin, Bi-Wei |
---|---|
論文名稱: |
非局部邊界條件之奇異擾動方程的嚴格數學分析 A rigorous analysis for the singularly perturbed problem with nonlocal boundary condition |
指導教授: |
李俊璋
Lee, Chiun-Chang |
口試委員: |
吳昌鴻
Wu, Chang-Hong 朱家杰 Chu, Chia-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 計算與建模科學研究所 Institute of Computational and Modeling Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 20 |
中文關鍵詞: | 奇異擾動微分方程 、非局部邊界條件 、邊界層 、漸近行為 、內層解 |
外文關鍵詞: | Singularly perturbed ODE, Nonlocal boundary condition, Boundary layers, Asymptotic behavior, Inner solutions |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討某類奇異擾動問題,我們考慮一類非局部邊界條件。
我們將研究解函數u在參數趨近於零時所呈現之漸近行為。說的更詳盡一點,我們證明了當參數趨於0時,u將在定義域(0,l)中任意的閉區間內將以指數方式遞減至零。同時,我們也展示了u在x=0與x=l的邊界層行為。更進一步地,我們證明了存在一個正參數使得此方程的解u具有唯一性,並且建立了u在邊界層的梯度估計相對於微小參數的非平凡漸進展開。我們主要的核心策略,就是將原來的非局部邊界條件奇異擾動微分方程解耦成兩個具有局部邊界條件之奇異擾動微分方程,以及應用偏微分方程中的比較定理來處理此問題。
This thesis is concerned with a class of singularly perturbed problems in the domain (0,l) with a small parameter and the following nonlocal boundary conditions.
We investigate the asymptotic behavior of solutions approaches to zero. Precisely speaking, we show that as small parameter tends to 0.The function u exponentially decays to zero in any compact subset of (0,l), and exhibits boundary layers near x=0 and x=l. Moreover, there exists small positive parameter such that we obtain the uniqueness of u , and establish the gradient estimate and nontrivial asymptotic expansions of u(0) and u(l) with respect to the small parameter. The main idea is to transform the original equation into the combination of two equations with local boundary conditions and apply the PDE comparison theorem to the singular perturbed problem.
1. Avner Friedman : Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions Quart. Appl. Math. {44} (1986) 401--407.
2. R. Cziegis : The difference schemes for problems with nonlocal conditions, Informatica
(Lietuva) {2} (1991) 155--170.
3. Eduardo Casas, Luis Alberto Fern\'{a}ndez : Optimal control of semilinear elliptic equations with pointwise constraints on the gradient of the state, Applied Mathematics and Optimization {27} (1993) 35--56.
4. A.R. Danilin : Approximation of a singularly perturbed elliptic problem of optimal control, Sb. Math. {191} (2000) 1421--1431.
5. C.V. Pao : Numerical solutions of reaction–diffusion equations with nonlocal boundary
conditions, J. Comput. Appl. Math {136} (2001) 227--243.
6. M. Cakir, G.M. Amiraliyev : A finite difference method for the
singularly perturbed problem with nonlocal boundary condition, Applied Mathematics and Computation {160} (2005) 539--549.
7. Mehdi Dehghan : A computatoinal study of the one-dimensional parabolic equation subject to nonclassical boundary specifications, Numerical Methods for Partial Differential Equations {22} (2006) 220--257.
8. C. Meyer, A. R\"{o}sch, F. Tr\"{o}ltzsch}: Optimal control of PDEs with regularized pointwise state constraints, Comput. Optim. Appl. {33} (2006) 209--228.
9. Abbas Saadatmandi, Mehdi Dehghan : Numerical solution of the one-dimensional wave equation with an integral condition, Numerical Methods for Partial Differential Equations {23} (2007) 282--292.
10. Mehdi Dehghan, Mehdi Ramezani : Composite spectral method for solution of the diffusion equation with specification of energy, Numerical Methods for Partial Differential Equations {24} (2008) 950--959.
11. Abdelkader Boucherif : Second-order boundary value problems with integral boundary conditions, Nonlinear Analysis {70} (2009) 364--371.
12. Feng Xie , Zhaoyang Jin, Mingkang Ni : On the Step-type Contrast Structure of a
Second-order Semilinear Differential Equation with Integral Boundary Conditions, Electronic Journal of Qualitative Theory of Differential Equations {62} (2010) 1--14.
13. Xu Xiana, Donal O’Regan, Chen Yanfang : Structure of positive solution sets of semi-positone singular boundary value problems, Nonlinear Analysis {72} (2010) 3535--3550.
14. Meiqiang Feng : Existence of symmetric positive solutions for a boundary value problem with integral boundary conditions, Applied Mathematics Letters {24} (2011) 1419--1427.
15. A. R\"{o}sch, D. Wachsmuth : A-posteriori error estimates for optimal control problems with state and control constraints, Numer. Math. {120} (2012) 733--762.
16. Lishan Liu, Xinan Hao, Yonghong Wu : Positive solutions for singular second order differential equations with integral boundary conditions, Mathematical and Computer Modelling {57} (2013) 836--847.
17. F. Kruse, M. Ulbrich : A self-concordant interior point approach for optimal control with state constraints, SIAM J. Optim. {25} (2015) 770--806.
18. Limeng Wu, Mingkang Ni, Haibo Lu : Internal layer solution of singularly perturbed optimal control problem with integral boundary condition, Qualitative Theory of Dynamical Systems {17} (2018) 49--66.
19. Veronika Karl, Daniel Wachsmuth : An augmented Lagrange method for elliptic state
constrained optimal control problems, Comput. Optim. Appl. {69} (2018) 857–-880.
20. F.Tr\"{o}ltzsch} : Optimal Control of Partial Differential Equations: Theory, Methods and Applications,{Volume 112 of Graduate Studies in Mathematics}, American Mathematical Society, Providence (2010).