研究生: |
蘇 琦 Su, C. |
---|---|
論文名稱: |
以分離元素法數值運算模擬陶瓷粉體在溶液中的分散與沉降行為 Numerical Simulation of Colloidal Dispersion and Sedimentation of Ceramic Powders by Discrete Element Method (DEM) |
指導教授: |
簡朝和
Jean, J. H. |
口試委員: |
李嘉甄
Li, Chia-Chen 鍾昇恆 Chung, Sheng-Heng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 離散元素法 、數值模擬 、陶瓷粉體 、分散與沉降行為 |
外文關鍵詞: | Colloidal dispersion, Sedimentation, Ceramic powders, Discrete element method (DEM) |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以離散元素法(Discrete Element Method, DEM)數值運算模擬陶
瓷粉體在溶液中的分散與沉降行為。此方法將每顆陶瓷粉體視為單獨的
元素,並將陶瓷粉體間在溶液中所受到的不同交互作用力如凡德瓦吸引
力、電雙層排斥力、浮力、重力、摩擦力等納入計算中,利用數值運算
模擬其在有限空間與時間下的膠凝分散行為與沉降微觀結構。陶瓷粉體
在分散與加壓沉降過程中,膠凝穩定狀態與製程參數對陶瓷粉體堆積結
構具有即時與主導性的影響,而此影響皆可由數值運算模擬與分析得到
驗證。具高界達電位(Zeta Potential, ζ)的陶瓷粉體懸浮液,其分散穩定
性較為良好,而具低界達電位懸浮液中的陶瓷粉體則會形成凝團。在加
壓沉降實驗中,具較高界達電位且分散穩定性良好的懸浮液會形成較緻
密堆積結構;當沉降速率加快,形成的粉體堆積缺陷就越多,導致較低
的堆積密度。
The colloidal dispersion and sedimentation behaviors of ceramic powder
suspensions have been assessed by numerical simulation using discrete
element method (DEM). Forces of particle-particle including van der Waal’s
attractive and double-layer repulsive forces, and particle-medium including
buoyancy, gravitation and friction forces are included in the simulation. The
results show that the ceramic powder suspension with a high zeta potential
exhibits a better colloidal dispersion, in relative to agglomeration for the
suspension with a low zeta potential. For colloidal filtration, a higher powder
packing density is resulted for the sediments formed from the suspension with
a higher zeta potential than those with a low zeta potential, consistent with
those observed experimentally.
[1] P. A. Cundall and O. D. L. Strack, ‘‘A Discrete Numerical Model for Granular Assemblies’’, Geotechnique 29, 47–65, (1979).
[2] Y. Tsuji, T. Tanaka and T. Ishida, ‘‘Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particle in a Horizontal Pipe’’, Powder Technol. 71, 239-250 (1992).
[3] D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4th ed; Butterworth-Heinemann, London (1992).
[4] P. C. Hiemenz, Principles of Colloid and Surface Chemistry, 3rd ed; Marcel Dekker, New York (1997).
[5] R. J. Hunter, Foundations of Colloid Science, Vol. I; p. 182. Clarendon, Oxford, UK (1992).
[6] G. G. Stokes, ‘‘On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids”, Trans. Cambridge Philos. Soc. VIII, 287-319, (1845).
[7] C.W. Hong and P. Greil, ‘‘DEM Simulation of Particle-Packing Dynamics Packing in Colloidal Forming Processes during Colloidal Forming Processes’’; pp. 349–53 in Ceramic Trans., Am. Ceram. Soc., Columbs, OH, USA (1995).
[8] S. Dey, S. Z. Ali and E. Padhi, ‘‘Hydrodynamic Lift on Sediment Particles at Entrainment: Present Status and Its Prospect’’, J. Hydraul. Eng., 146(6), 03120001 (2020).
[9] C.W. Hong, ‘‘New Concept for Simulating Particle Packing in Colloidal Forming Processes”, J. Am. Ceram. Soc. 80, 2517–24, (1997).
[10] C.W. Hong, ‘‘Discrete Element Modeling of Colloidal Packing Dynamics during Centrifugal Casting’’, J. Ceram Soc. 104, 793-795, (1996).
[11] J. Gustafsson, E. Nordenswan, and J. B. Rosenholm, ‘‘Consolidation Behavior in Sedimentation of TiO2 Suspensions in the Presence of Electrolytes”, J. Colloid and Interface Sci. 258, 235–243, (2003).
[12] M. Kosmulski, S. D. Vidal, J. Gustafsson, and J.B. Rosenholm, ‘‘Charge Interactions in Semi-concentrated Titania Suspensions at very High Ionic Strengths ”, J. Colloid and Interface Sci. 157, 245–259, (1999).
[13] M. Kosmulski, J. Gustafsson, and J. B. Rosenholm, ‘‘Correlation between the Zeta Potential and Rheological Properties of Anatase Dispersions”, J. Colloid and Interface Sci. 209, 200–206, (1999).
[14] Z. Peng, E. Doroodchi , G. Evans, ‘‘DEM simulation of aggregation of suspended nanoparticles’’, Powder Technology 204, 91-102, (2010).