簡易檢索 / 詳目顯示

研究生: 許哲銘
Hsu, Che-Ming
論文名稱: 銅氧化物/金/氧化鋅奈米複合材料之氣體感測器應用於環境二氧化氮濃度場域監測
Copper Oxide/Gold/Zinc Oxide Nanocomposite Gas Sensor for Field Monitoring of Environmental Nitrogen Dioxide Content
指導教授: 林鶴南
Lin, Heh-Nan
口試委員: 李紫原
Lee, Chi-Young
廖建能
Liao, Chien-Neng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 87
中文關鍵詞: 二氧化氮氣體感測器金屬氧化物半導體溫濕度效應場域測試
外文關鍵詞: nitrogen dioxide gas sensor, metal oxide semiconductor, humidity and temperature effect, field test
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用銅氧化物及金修飾氧化鋅奈米柱作為氣體感測材料,進行NO2氣體感測、溫濕度效應分析、選擇性測試及戶外環境感測之實驗,探討本感測材料在戶外實際應用上對NO2的感測效果及老化的現象。
    首先以黃光微影與電子束蒸鍍,在四吋矽晶圓上製作出金/鈦金屬電極,再以大面積水熱法成長氧化鋅奈米柱於矽晶圓上,並以光還原法修飾金奈米粒子及銅氧化物於退火氧化鋅奈米柱上,形成銅氧化物/金/氧化鋅三元複合材料,製作出感測晶片。由掃描式電子顯微鏡(SEM)觀察材料之表面形貌,氧化鋅奈米柱為直徑約100 nm之六角柱結構,長度約2 μm;而銅氧化物/金/氧化鋅複合材料則在氧化鋅奈米柱頂端及側壁均勻分佈直徑約200 nm之銅氧化物團簇。
    以紫外光激發模式進行NO2氣體感測,並將氣體吸附於材料造成的電阻變化率定義為響應。感測晶片在100 ppb NO2下,其響應值為209%。感測晶片對5 ppb ~ 100 ppb NO2之響應與濃度呈線性關係,其靈敏度約0.02 ppb1。當環境溫度由15 oC上升到50 oC時,感測晶片之電阻會隨之增加,其斜率約2 k oC1。在定溫環境下,感測晶片在相對濕度0.5以上之環境,電阻會隨濕度上升而增加;對100 ppb NO2之響應會在相對濕度0.5時達到最大值。對感測晶片進行不同氣體之感測實驗,晶片對NO2具有最大之靈敏度,O3次之,而對O3之靈敏度約為對NO2之靈敏度的三分之一。
    將手持式感測器與感測晶片放置於新北永和測站進行戶外27天監測,分別以NO2感測數據搭配溫濕度修正及人工神經網路兩種方法進行感測器氣體濃度計算,並比對測站氣體濃度值。整體來說,以人工神經網路計算的表現更加出色,感測器與測站數值之決定係數可達0.35。以掃描式電子顯微鏡(SEM)、能量色散X-射線光譜儀(EDS)及X-射線光電子光譜(XPS)分析感測晶片在戶外監測前後材料的變化。氧化鋅奈米柱受到腐蝕由六角柱轉為圓柱,且材料的表面增加了N及S之元素訊號,推測硫酸及硝酸與銅氧化物發生化學反應形成硫酸銅及硝酸銅。除此之外,CuO與Cu2O之比值由監測前的1.12上升至9.09,顯示Cu2O在潮濕環境下與氧氣發生氧化反應而使材料使用初期不穩定,當Cu2O轉變成CuO後,感測材料會趨於穩定。
    綜合以上,本實驗之銅氧化物/金/氧化鋅複合材料成本低,對NO2具有高靈敏度,透過溫溼度效應的數據及人工神經網路計算可以更精確地得到戶外NO2氣體濃度。


    The goal of this study is to develop a chemiresistive gas sensor for field monitoring of environmental NO2 content. A copper oxide/gold/zinc oxide ternary nanocomposite was prepared for NO2 sensing. The temperature and humidity effects and the selectivity over various gases were investigated in detail. The aging of the nanocomposite in the field was also analyzed.
    First, Au/Ti electrodes were made by photolithography and e-gun evaporation on the 4-inch Si wafer. ZnO nanorods (NRs) were grown by using a large area growth of a low-temperature hydrothermal method on the wafer. Au nanoparticles (NPs) and CuxO clusters were then reduced on annealed ZnO NRs by using a photoreduction method to become CuxO/Au/ZnO sensor chips. Scanning electron microscopy was used for morphology analysis of the materals. ZnO NRs were hexagonal structure with 100 nm in diameter and 2 μm in length. CuxO clusters were found on ZnO NRs with 200 nm in diameter in CuxO/Au/ZnO.
    UV activation was used for NO2 sensing, and the definition of response was the variation in resistance. The response was 209% for 100 ppb NO2. At 5 ppb ~ 100 ppb, the response was linear with the concentration for sensor chip, and the sensitivity was 0.02 ppb1.When the environmental temperature increased from 15 oC to 50 oC, the resistance of the sensor chip also increased. At constant temperature, 0.5 ~ 1 relative humidity (RH), the resistance of sensor chip increased with RH. The maximum response occurred at 0.5 RH for 100 ppb NO2. We did the different gas sensing measurement for sensor chip, and showed the highest sensitivity for NO2. The O3 sensitivity was about one-third of the NO2 sensitivity.
    The portable gas sensor with sensor chip was placed in Yonghe monitoring station in New Taipei city for the 27-day field test. Two different methods were used for the gas concentration calculation. One of the method was calculated by NO2 sensing results including temperature and humidity effects, and the other one was calculated by artificial neural network (ANN). In short, ANN showed the better results, and the determination of coefficient was 0.35. Scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to analyze the change of the sensor chip after 27-day field test. ZnO NRs were corroded, and the morphology transformed from hexagonal structure into cylinder. N and S signal were detected on the surface of the sensor chip because of the formation of CuSO4 and Cu(NO3)2. In addition, the ratio of CuO and Cu2O changed from 1.12 to 9.09 after the field test. Cu2O would react with oxygen under humid environment and become CuO. Once Cu2O oxidized to CuO, the materials became more stable.
    In conclusion, low-cost CuxO/Au/ZnO sensor chip was highly sensitive to NO2. It could monitor environmental NO2 content more accurately by using temperature effect correction, humidity effect correction and ANN calculation.

    摘要--- I Abstract-III 致謝--- V 目錄--- VI 圖目錄-- X 表目錄-- XIV 第一章 緒論--- 2 1.1 前言--- 2 1.2 氣體感測器------ 4 1.2.1 金屬氧化物半導體之氣體感測器------ 6 1.2.2 高分子之氣體感測器------- 7 1.3 氣體感測器基本性質------- 8 1.4 研究動機-------- 9 第二章 文獻回顧-------- 11 2.1 氧化鋅概論------ 11 2.1.1 晶體結構-------- 11 2.1.2 氧化鋅奈米柱合成方式與機制-------- 12 2.1.3 氧化鋅n-type半導體特性--- 16 2.1.4 光學性質-------- 17 2.2 氣體感測原理---- 18 2.2.1 金屬氧化物感測機制------- 18 2.2.2 氧化鋅與二氧化氮之吸附反應-------- 20 2.2.3 紫外光激發脫附機制------- 22 2.3 複合材料之氣體感測應用--- 24 2.3.1 金屬氧化物------ 24 2.3.2 貴金屬-- 26 2.4 光還原法-------- 27 2.4.1 銅氧化物-------- 27 2.4.2 金奈米粒子------ 28 2.5 退火氧化鋅以增加穩定性--- 29 2.6 銅氧化物/金/氧化鋅之最佳製程參數-- 30 第三章 實驗方法與儀器--- 33 3.1 感測元件製作---- 33 3.1.1 基板電極製作---- 33 3.1.2 氧化鋅奈米線製作- 34 3.1.3 退火熱處理------ 36 3.1.4 奈米粒子修飾---- 36 3.1.4.1 金奈米粒子修飾-- 36 3.1.4.2 銅氧化物團簇修飾- 36 3.2 感測元件分析儀器- 37 3.2.1 掃描式電子顯微鏡- 37 3.2.2 能量色散X-射線光譜儀----- 37 3.2.3 螢光光譜儀------ 37 3.2.4 X-射線繞射分析儀- 37 3.2.5 X-射線光電子光譜- 37 3.3 氣體感測-------- 38 3.3.1 可攜式氣體感測器- 38 3.3.2 氣體感測系統架構- 39 3.3.3 二氧化氮氣體濃度計算----- 41 3.3.4 氣體感測與溫溼度效應步驟-- 42 第四章 結果與討論------ 45 4.1 材料分析-------- 45 4.1.1 表面形貌---------45 4.1.2 元素成分分析---- 47 4.1.3 晶體結構-------- 49 4.1.4 光致放光性質---- 49 4.2 二氧化氮氣體感測- 51 4.3 溫濕度效應------ 55 4.3.1 溫濕度對UV LED之影響----- 55 4.3.2 溫度對感測晶片之電阻影響-- 56 4.3.3 相對濕度對感測晶片之電阻影響------ 57 4.3.4 相對濕度對感測晶片之響應影響------ 59 4.4 感測晶片CuxO/Au/ZnO*之選擇性----- 59 4.5 戶外長時間感測--- 60 4.5.1 氣體濃度計算---- 62 4.5.2 人工神經網路之氣體濃度計算-------- 66 4.5.3 感測晶片老化現象的探討--- 71 4.6 二氧化氮感測器比較------- 74 第五章 結論--- 78 參考文獻 --------80

    [1] A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, “NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives,” Sensors Actuators B Chem., vol. 171, pp. 25–42, 2012.
    [2] L. B. Kreuzer and C. K. N. Patel, “Nitric oxide air pollution: detection by optoacoustic spectroscopy,” Science, vol. 173, no. 3991, pp. 45–47, 1971.
    [3] A. J. Chauhan et al., “Personal exposure to nitrogen dioxide (NO2) and the severity of virus-induced asthma in children,” Lancet, vol. 361, no. 9373, pp. 1939–1944, 2003.
    [4] D. L. Poster, M. M. Schantz, L. C. Sander, and S. A. Wise, “Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods,” Anal. Bioanal. Chem., vol. 386, no. 4, pp. 859–881, 2006.
    [5] E. Matisova and M. Dömötörová, “Fast gas chromatography and its use in trace analysis,” J. Chromatogr. A, vol. 1000, no. 1–2, pp. 199–221, 2003.
    [6] D. Smith and P. Španěl, “Selected ion flow tube mass spectrometry (SIFT‐MS) for on‐line trace gas analysis,” Mass Spectrom. Rev., vol. 24, no. 5, pp. 661–700, 2005.
    [7] J. Beauchamp, F. Kirsch, and A. Buettner, “Real-time breath gas analysis for pharmacokinetics: monitoring exhaled breath by on-line proton-transfer-reaction mass spectrometry after ingestion of eucalyptol-containing capsules,” J. Breath Res., vol. 4, no. 2, pp. 26006, 2010.
    [8] M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air,” Anal. Chem., vol. 72, no. 1, pp. 206–215, 2000.
    [9] P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng., vol. 37, no. 2–3, pp. 101–114, 2002.
    [10] L. Pereira, M. Pujol, J. Garcia‐Mas, and M. A. Phillips, “Non‐invasive quantification of ethylene in attached fruit headspace at 1 ppb by gas chromatography–mass spectrometry,” Plant J., vol. 91, no. 1, pp. 172–183, 2017.
    [11] A. Hulanicki, S. Glab, and F. Ingman, “Chemical sensors: definitions and classification,” Pure Appl. Chem., vol. 63, no. 9, pp. 1247–1250, 1991.
    [12] A. Bielański, J. Dereń, and J. Haber, “Electric conductivity and catalytic activity of semiconducting oxide catalysts,” Nature, vol. 179, no. 4561, pp. 668–669, 1957.
    [13] T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semiconductive thin films,” Anal. Chem., vol. 34, no. 11, pp. 1502–1503, 1962.
    [14] R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, “Zinc oxide nanostructures for NO2 gas–sensor applications: A review,” Nano-Micro Lett., vol. 7, no. 2, pp. 97–120, 2015.
    [15] D. Meng, T. Yamazaki, Y. Shen, Z. Liu, and T. Kikuta, “Preparation of WO3 nanoparticles and application to NO2 sensor,” Appl. Surf. Sci., vol. 256, no. 4, pp. 1050–1053, 2009.
    [16] J. Zhang et al., “NO2 sensing performance of SnO2 hollow-sphere sensor,” Sensors Actuators B Chem., vol. 135, no. 2, pp. 610–617, 2009.
    [17] T. Xie et al., “UV-assisted room-temperature chemiresistive NO2 sensor based on TiO2 thin film,” J. Alloys Compd., vol. 653, pp. 255–259, 2015.
    [18] E. Comini, “Metal oxide nano-crystals for gas sensing,” Anal. Chim. Acta, vol. 568, no. 1–2, pp. 28–40, 2006.
    [19] Y. Wang, H. Zhang, and X. Sun, “Electrospun nanowebs of NiO/SnO2 p-n heterojunctions for enhanced gas sensing,” Appl. Surf. Sci., vol. 389, pp. 514–520, 2016.
    [20] C. N. Xu, N. Miura, Y. Ishida, K. Matsuda, and N. Yamazoe, “Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element,” Sensors Actuators B Chem., vol. 65, no. 1–3, pp. 163–165, 2000.
    [21] H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors, vol. 7, no. 3, pp. 267–307, 2007.
    [22] V. E. Bochenkov and G. B. Sergeev, “Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures,” Metal Oxide Nanostructures and Their Appications., vol. 3, American Scientific Publishers, pp. 31–52, 2010.
    [23] S. Krishnamoorthy and A. A. Iliadis, “Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/(100) Si substrates,” Solid. State. Electron., vol. 52, no. 11, pp. 1710–1716, 2008.
    [24] A. Tsukazaki et al., “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater., vol. 4, no. 1, pp. 42–46, 2005.
    [25] K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, and A. Hagfeldt, “A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes,” Sol. Energy Mater. Sol. Cells, vol. 73, no. 1, pp. 51–58, 2002.
    [26] M. A. Behnajady, N. Modirshahla, and R. Hamzavi, “Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst,” J. Hazard. Mater., vol. 133, no. 1, pp. 226–232, 2006.
    [27] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, “Synthesis, Characterization, and Applications of ZnO Nanowires,” J. Nanomater., vol. 2012, pp. 624520, 2012.
    [28] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. matter, vol. 16, no. 25, pp. R829, 2004.
    [29] M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley, and Y. Sun, “The kinetics of the hydrothermal growth of ZnO nanostructures,” Thin Solid Films, vol. 515, no. 24, pp. 8679–8683, 2007.
    [30] S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater., 2009.
    [31] L. Spanhel, “Colloidal ZnO nanostructures and functional coatings: A survey,” J. sol-gel Sci. Technol., vol. 39, no. 1, pp. 7–24, 2006.
    [32] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater., vol. 15, no. 5, pp. 464–466, 2003.
    [33] V. Strano et al., “Double role of HMTA in ZnO nanorods grown by chemical bath deposition,” J. Phys. Chem. C, vol. 118, no. 48, pp. 28189–28195, 2014.
    [34] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, no. 16, pp. 2575–2591, 2004.
    [35] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO–nanostructures, defects, and devices,” Mater. Today, vol. 10, no. 5, pp. 40–48, 2007.
    [36] A. Janotti and C. G. Van deWalle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett., vol. 87, no. 12, pp. 122102, 2005.
    [37] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79, no. 10, pp. 7983–7990, 1996.
    [38] C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, “A comparative analysis of deep level emission in ZnO layers deposited by various methods,” J. Appl. Phys., vol. 105, no. 1, pp. 13502, 2009.
    [39] L. Liao et al., “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C, vol. 111, no. 5, pp. 1900–1903, 2007.
    [40] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal oxide gas sensors: sensitivity and influencing factors,” Sensors, vol. 10, no. 3, pp. 2088–2106, 2010.
    [41] D. R. Miller, S. A. Akbar, and P. A. Morris, “Nanoscale metal oxide-based heterojunctions for gas sensing: a review,” Sensors Actuators B Chem., vol. 204, pp. 250–272, 2014.
    [42] H. J. Kim and J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,” Sensors Actuators B Chem., vol. 192, pp. 607–627, 2014.
    [43] Z. Wang et al., “Controlled Synthesis of Ordered Mesoporous Carbon-Cobalt Oxide Nanocomposites with Large Mesopores and Graphitic Walls,” Chem. Mater., vol. 28, no. 21, pp. 7773–7780, 2016.
    [44] M. W. Ahn et al., “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett., vol. 93, no. 26, pp. 263103, 2008.
    [45] X. Geng, C. Zhang, Y. Luo, H. Liao, and M. Debliquy, “Light assisted room-temperature NO2 sensors with enhanced performance based on black SnO1-α@ZnO1-β@SnO2-γ nanocomposite coatings deposited by solution precursor plasma spray,” Ceram. Int., vol. 43, no. 8, pp. 5990–5998, 2017.
    [46] C. Soci et al., “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, no. 4, pp. 1003–1009, 2007.
    [47] S. W. Fan, A. K. Srivastava, and V. P. Dravid, “UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO,” Appl. Phys. Lett., vol. 95, no. 14, pp. 142106, 2009.
    [48] J. Han, T. Wang, T. Li, H. Yu, Y. Yang, and X. Dong, “Enhanced NOx gas sensing properties of ordered mesoporous WO3/ZnO prepared by electroless plating,” Adv. Mater. Interfaces, vol. 5, no. 9, pp. 1701167, 2018.
    [49] Y. Ushio, M. Miyayama, and H. Yanagida, “Effects of interface states on gas-sensing properties of a CuO/ZnO thin-film heterojunction,” Sensors Actuators B Chem., vol. 17, no. 3, pp. 221–226, 1994.
    [50] L. Y. Hong, H. W. Ke, C. E. Tsai, and H. N. Lin, “Low concentration NO gas sensing under ambient environment using Cu2O nanoparticle modified ZnO nanowires,” Mater. Lett., vol. 185, pp. 243–246, 2016.
    [51] L. H. Qian, K. Wang, Y. Li, H. T. Fang, Q. H. Lu, and X. L. Ma, “CO sensor based on Au-decorated SnO2 nanobelt,” Mater. Chem. Phys., vol. 100, no. 1, pp. 82–84, 2006.
    [52] S. A. Müller et al., “Exploiting Synergies in Catalysis and Gas Sensing using Noble Metal‐Loaded Oxide Composites,” ChemCatChem, vol. 10, no. 5, pp. 864–880, 2018.
    [53] J. Ma et al., “Pt Nanoparticles Sensitized Ordered Mesoporous WO3 Semiconductor: Gas Sensing Performance and Mechanism Study,” Adv. Funct. Mater., vol. 28, no. 6, pp. 1705268, 2018.
    [54] X. Liu, Z. Chang, L. Luo, X. Lei, J. Liu, and X. Sun, “Sea urchin-like Ag–α-Fe2O3 nanocomposite microspheres: synthesis and gas sensing applications,” J. Mater. Chem., vol. 22, no. 15, pp. 7232–7238, 2012.
    [55] A. Kolmakov, D. O. Klenov, Y. Lilach, S.Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett., vol. 5, no. 4, pp. 667–673, 2005.
    [56] D. V. Ponnuvelu et al., “Rapid synthesis and characterization of hybrid ZnO@ Au core–shell nanorods for high performance, low temperature NO2 gas sensor applications,” Appl. Surf. Sci., vol. 355, pp. 726–735, 2015.
    [57] M. Hübner, D. Koziej, J.-D. Grunwaldt, U. Weimar, and N. Barsan, “An Au clusters related spill-over sensitization mechanism in SnO2-based gas sensors identified by operando HERFD-XAS, work function changes, DC resistance and catalytic conversion studies,” Phys. Chem. Chem. Phys., vol. 14, no. 38, pp. 13249–13254, 2012.
    [58] M. Grätzel, “Photoelectrochemical cells,” in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, pp. 26–32, 2011.
    [59] U. Pal and P. Santiago, “Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process,” J. Phys. Chem. B, vol. 109, no. 32, pp. 15317–15321, 2005.
    [60] W. M. Kwok et al., “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett., vol. 89, no. 18, pp. 183112, 2006.
    [61] M. Jiao et al., “Influence of annealing temperature on theperformance and stability of on-chip hydrothermally grown ZnO nanorod gassensor toward NO2,” Acad. J. Sci. Res., vol. 6, no. 5, pp. 180–189, 2018.
    [62] 薩欽, “氧化鋅奈米柱為基礎三元奈米複合材料氣體感測器之大氣與成長參數效應,” 國立清華大學, 2020.
    [63] S. Yoon, J. H. Lim, and B. Yoo, “Oxygen re-adsorption of a single ZnO nanobridge by Joule heating under ultraviolet illumination,” Appl. Phys. Express, vol. 5, no. 10, pp. 105003, 2012.
    [64] V. Khranovskyy, J. Eriksson, A. Lloyd-Spetz, R. Yakimova, and L. Hultman, “Effect of oxygen exposure on the electrical conductivity and gas sensitivity of nanostructured ZnO films,” Thin Solid Films, vol. 517, no. 6, pp. 2073–2078, 2009.
    [65] Z. Bai, C. Xie, M. Hu, S. Zhang, and D. Zeng, “Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor,” Mater. Sci. Eng. B, vol. 149, no. 1, pp. 12–17, 2008.
    [66] B. Urasinska-Wojcik, T. A. Vincent, M. F. Chowdhury, and J. W. Gardner, “Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment,” Sensors Actuators B Chem., vol. 239, pp. 1051–1059, 2017.
    [67] W. J. Moon, J. H. Yu, and G. M. Choi, “The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor,” Sensors Actuators B Chem., vol. 87, no. 3, pp. 464–470, 2002.
    [68] A. Lewis, W. R. Peltier, and E. vonSchneidemesser, “Low-cost sensors for the measurement of atmospheric composition: overview of topic and future applications,” 2018.

    QR CODE