研究生: |
王群超 |
---|---|
論文名稱: |
固定Pseudomonas fluorescens脂肪酵素於幾丁聚糖之研究 |
指導教授: |
朱 一 民
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 幾丁聚醣 、Pseudomonas fluorescens 、脂肪酵素 、S-AMPA 、固定化酵素 |
外文關鍵詞: | Chitosan, Pseudomonas fluorescens, lipase, S-AMPA, immobilized enzyme |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來利用酵素進行非對掌異構物之光學分割研究廣為受到重視,而酵素固定化技術的進步也使酵素的應用更具高穩定性和可重複使用性。
本實驗利用固定於幾丁聚糖之脂肪酵素(Pseudomonas fluorescens IFO 12055,EC 3.1.1.3)催化S,R-MAMP(R,S-Methyl-3-Acetylthio- 2-Methylpropionate)不對稱水解轉換以生產S-AMPA(S-Acethylthio-2-Methylpropionic Acid)。
在MAMP的合成純化方面,成功合成出高純度的反應基質,並可達到良好的製備再現性。
實驗發現,MAMP與AMPA在水溶液中皆可能有負反應的產生,例如因為硫酯鍵(thioester-bonding)水解而生成methyl β-mercaptoisobutyrate與β-mercaptoisobutyric acid。
由膠層過濾層析法與SDS-PAGE分析,Pseudomonas fluorescens IFO 12055脂肪酵素 (68.0kDa)含有兩個分子量相同或及接近之subunit,其分子量約為36.0kDa。固定化酵素與自由酵素最適操作條件均為50℃, pH=8.0,且固定化增加了酵素對酸的忍受度。兩者Km值相近,惟固定化酵素(41.18μmole AMPA /hr, mg enzyme)之Vmax小於自由酵素(71.06μmole AMPA /hr, mg enzyme),顯示固定化造成酵素部分失活。固定化酵素在操作30批次後仍能保有80%以上之活性,具有良好重複使用利用性。固定純化酵素之單位活性約是粗酵素的2.38倍。
在30℃ pH=7.6 條件下以固定化酵素進行光學分割,可得到光學純度88%(e.e.)的S-AMPA。
The present research was mainly concerned with the immobilization of lipase(EC 3.1.1.3)from Pseudomonas fluorescens IFO 12055 on chitosan bead, for preparing S-AMPA(S-Acethylthio-2-Methylpropionic Acid) by enantioselective hydrolysis of racemic MAMP(Methyl-3-Acetylthio- 2-Methylpropionate). We found that MAMP and AMPA could hydrolyze not only the ester-bonding but also the thioester-bounding. The Molecular Weight of the lipase estimated by Gel Filtration and SDS-PAGE was 68kDa. This enzyme was constituted of two subunits (about 36kDa).The optimum temperature for free lipase and immobilized lipase on chitosan bead was 50℃, and optimum pH was 8.0. The Km(Michaelis constant)value of the immobilized enzyme was close to that of free enzyme. The Vmax value of the immobilized enzyme was lower than that of the free enzyme. Immobilized enzyme retains more than 80% of its activity for 30 batchs. It was confirmed that S-AMPA with 88%(e.e.)of optical purity was produced when reaction was done at 30℃ pH=7.6 by immobilized enzyme.
1. H. G. Reginald and M. G. Charles, Biochemistry, 2nded., Saunders College Publishing (1999).
2. M. F. Chaplin and C. Bucke, Enzyme Technology, p.80, Press Syndicate of the University of Cambridge, New York (1990).
3. J. C. Janson and L. Ryden, Protein Purification – Principles, High Resolution Methods, and Applications, p.13, VCH Publishers, Inc., New York (1989).
4. G. F. Bickerstaff, Immobilization of Enzymes and Cells, p.1, Humana Press Inc (1997).
5. I. Chubata, Immobilization Enzymes - Research and Development, Kodansha, Tokyo (1978).
6. R. F. Taylor, Protein Immobilization: Fundaments and Applications, p. 73, Marcel Dekker, New York (1991).
7. P. A Felse and T. Panda, “Studies on Applications of Chitin and its Derivatives”, Bioprocess eng., 20, 505-512 (1999).
8. K. Kurita, “Chemistry and Application of Chitin and Chitosan”, Polym. degradation stab., 59, 117-120 (1998).
9. S. Jei-Fu, C. Rey-Chang., F. F. Wang, and J. Y. Wang, “Lipolytic Activities of Lipase Immoblised on Six Selected Supporting Materials”, Biotechnol. Bioeng., 35 (2), 132-137 (1990).
10. S. Dumitriu and C. Esteban, “Immobilisation of Xylanase in Chitosan-Xanthan Hydrogels”, Biotech. Prog., 13 (5), 539-545 (1997)
11. R. A. A. Muzzarelli, “Immobilizationof Enzymes on Chitin and Chitosan”, Enzyme Microb. Technol., 2, 177-184 (1980).
12. D. W. Cushman , M. S. Cheung, E. F. Sabo, and M. A. Ondetti, “Design of Potent Competitive Inhibitors of Angiotensin-Converting Enzyme: Carboxyalkanoyl and Mercaptoalkanoyl Amino Acids”, Biochemistry, 16 (25), 5484-5491 (1977).
13. M. A. Ondetti and D. W. Cushman, “Inhibition of Renin-Angiotensin System : A New Approach to the Theory of Hypertension”, J. Med. Chem., 24, 355-361 (1981).
14. D. W. Cushman and M. A. Ondetti, “Inhibitors of angiotensin-converting enzyme for treatment of hypertension”, Biochem. pharmacol., 29, 1871-1877 (1980).
15. Stampa Diez Del Corral et al., “Optical Resolution of DL-3-Acetylthio-2-Methylpropionic Acid Using L-2-Aminobutanal as Resolving Agent”, United States Patent No.5,367,091, (1994).
16. Q. M. Gu, D. R. Reddy, and C. J. Sih, “Biofunctional Chiral Synthons via Biochemical Methods. VIII. Optically-Active 3-Aroylthio-2-Methypropionic Acids”, Tetrahedron lett., 27, 5203-5206 (1986).
17. R. N. Patel, J. M. Howell, A. Banerjee, K. F. Fortney, and L. J. Szarka , “Stereoselective Enzymatic Esterfication of 3-Benzoylthio-2Methylpropanoic Acid”, Appl. microbiol. biotechnol., 36, 29-34 (1991).
18. R. N. Patel , J. M. Howell, C. G. McNamee, K. F. Fortney, and L. J. Szarka, “Stereoselective Enzymatic Hydrolysis of α-[(Acethylthio)methyl]benzenepropanoic Acid and 3-Acetylthio-2-methylpropanoic Acid”, Biotechnol. appl. biochem., 16, 34-47 (1992).
19. D. F. Tai, C. C. Hung, H. Y. Huang, and I. L. Shin, “A Tandem Enzymatic Hydrolysis of 3-Acetythio-2-Methylpropionic Methy Ester”, Biotechnol. lett., 15 (12), 1229-1232 (1993).
20. A. M. Brzozowski, U. Derewenda, Z. S. Dererwenda, G. G. Dodson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jenson, S. A. Patkar, and L. Thim, “A Model for Interfiacial Activation in Lipases from the Structure of a Fungal Lipase-Inhibitor Complex”, Nature, 351, 491-494 (1991).
21. H. L. Brockman, W. E. Momsen, and T. Tsujita, “Lipid-Lipid Complexes : Properties and Effects on Lipase Binding to Surface”, J. Am. Oil Chem. Soc., 65 (6), 891-896 (1988).
22. P. Woolley and S. B. Petersen, Lipases : Their Structure, Biochemistry and Application, 1sted., Cambridge University Press, Australia (1994).
23. E. J. Gilbert, “Pseudomonas Lipases : Biochemical Properties and Molecular Cloning”, Enzyme Microb. Technol., 15, 634-645 (1993).
24. A. J. J. Straathof and J. A. Jongejan, “The Enantiomeric Ratio : Origin, Determination and Prediction”, Enzyme Microb. Technol., 21, 559-571 (1997).
25. C. S. Chen, Y. Fujimoto, G. Girdaukas, and C. J. Sih, “Quantitative Analyses of Biochemical Kinetic Resolutions of Enantiomers”, J. Am. Chem. Soc., 104 (25), 7294-7299 (1982).
26. R. J. KazlauSkas, A. N. Weissfloch, A. T. Rappaport, and L. A. Cuccia, “A Rule to Predict Which Enantiomer of a Secondary Alcohol Reacts Faster in Reactions Catalyzed by Cholesterol Esterase, Lipase from Pseudomonas cepacia, and Lipase from Candida regosa”, J. Org. Chem, 56 (8), 2656-2665 (1991).
27. P. G. Hultin and J. B. Jones, “Dilemma Regarding an Active Site Model for Porcine Pancreatic Lipase”, Tetrahedron lett., 33 (11), 1399-1402 (1992).
28. A. N. E. Weissfloch, R. J. Kazlauskas, “Enantiopreference of Lipase from Pseudomonas cepacia toward Primary Alcohols”, J. Org. Chem., 60 ,6959-6969 (1995).
29. P. L. A. Overbeeke, C. Govardhhan, N. Khalaf, J. A. Jongejan, and J. J. Heijnen, “Influence of Lid Conformation on Lipase Enantioselectivity”, Journal of Molecular Catalysis B : Enzymatic, 10, 385-393(2000).
30. M. M. Bradford, “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding”, Anal. biochem., 72, 248-254 (1976).
31. Akihiro Sakimae, Akihiko Hosoi, Estuko Kobayashi, Naoto Ohsuga, Ryozo Numazawa, Ichim Watanabe, and Hisao Ohnishi, “Screening of Microorganisms Producing D-β-Acetylthioisobutyric Acid from Methyl DL-β-Acetylthioisobutyrate”, Biosci. Biotech. Biochem., 56 (8), 1252-1256 (1992).