研究生: |
李紹全 Lee, Shao-Chuan |
---|---|
論文名稱: |
微波退火對矽材料電性變化之研究 The Effect of Microwave Annealing on the Electrical Properties of Silicon |
指導教授: |
李三保
Lee, Sanboh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 微波退火 、離子佈植 、共聚物 、甲基丙烯酸甲酯 、乙烯砒碇 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電晶體元件縮小,閘極長度也將跟著變短,這讓電晶體元件的操作速度越來越快。然而當閘極長度縮短到一定程度之後,短通道效應也開始產生作用,這會讓我們無法利用調整閘極電壓的方式來控制電晶體元件的啟動與關閉。然而傳統的快速退火製程已逐漸無法應付更淺的元件接面深度要求。因此我們利用微波爐針對利用離子佈植植入不同雜質原子的單晶矽和多晶矽來進行活化退火的熱處理。並且利用四點探針、二次離子質譜儀來分析退火後材料的片電阻和接面深度以及使用穿透式電子顯微鏡來了解表面再結晶的情形。我們發現在適當的微波時間和微波瓦數下能得到較低的片電阻值以及淺的接面深度。
1. F. L. Yang, D. H. Lee, H. Y. Chen, C. C. Chang, S. D. Liu, C.C. Hung, T. X. Chung, H. W. Chen, C. C. Huang, Y. H. Liu, C. C. Wu, C. C. Chen, S.C. Chen, Y. T. Chen, Y. H. Chen, C. J. Chen, B. W. Chan, P. F. Hsu, J. H. Shieh, H. J. Tao, Y. C. Yeo, Y. Li, J. W. Lee, P. Chen, M. S. Liang and C. Hu: 5nm-Gate Nanowire FinFET, 2004 Symposium on VLSI Technology, Digest of Technical Papers, pp.196-197 (2004)
2. T. Krishnamohan, D. Kim, S. Raghunathan and K. Saraswat: Double-Gate Strained-Ge Heterostructure Tunneling FET(TFET) With Record High Drive Currents and <60mV/dec Subthreshold slope, IEEE International Electron Devices Meeting 2008, Technical Digest, pp.947-949 (2008)
3. Y. Taur, E. J. Nowak: CMOS devices below 0.1 mu m: How high will performance go?, IEEE International Electron Devices Meeting 1997, Technical Digest, pp.215-218 (1997)
4. Majumdar, Z. Ren, J. W. Sleight, D. DoBuzinsky, J. R. Holt, R. Veingalla, S. J. Koester and W. Haensch: High-Performance Undoped-Body 8-nm-Thin SOI Field-Effect Transistor, IEEE Electron Device Letters, Vol. 29, pp.515-517 (2008)
5. A. Shima, T. Mine, K. Torii and A. Hiraiwa: Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing, IEEE Transactions on Electron Devices, Vol. 54, pp.2953-2959 (2007)
6. C. F. Nieh, K. C. Ku, C. H. Chen, H. Huang, L. T. Wang, L. P. Huang, Y. M. Sheu, C. C. Wang, T. L. Lee, S. C. Chen, M. S. Liang and J. Gong: Millisecond Anneal and Short-Channel Effect Control in Si CMOS Transistor Performance, IEEE Electron Device Letters, Vol. 27, pp.969-971 (2006)
7. Y. Takamura, E. H. Kim, S. H. Jain, P. B. Griffin and J. D. Plummer: The use of laser annealing to reduce parasitic series resistances in MOS devices, IIT2002: Ion Implantation Technology, Proceedings, pp.56-59 (2002)
8. F. Liu, H. H. Wong, K. W. Ang, M. Zhu, X. Wang, D. M. Y. Lai, P. C. Lim and Y. C. Yeo: Laser Annealing of Amorphous Germanium on Silicon-Germanium Source/Drain for Strain and Performance Enhancement in pMOSFETs. IEEE Electron Device Letters, Vol. 29, pp.885-888 (2008)
9. A. Majumdar, Z. Ren, J. W. Sleight, D. Dobuzinsky, J. R. Holt, R. Veingalla, S. J. Koester and W. Haensch: High-Performance Undoped-Body 8-nm-Thin SOI Field-Effect Transistor, IEEE Electron Device Letters, Vol. 29, pp.515-517 (2008)
10. S. H. Jain, P. B. Griffin, J. D. Plummer, S. McCoy, J. Gelpey, T. Selinger and D. F. Downey: Low resistance, low-leakage ultrashallow p+-Junction Formation Using Millsecond Flash Anneals, IEEE Transactions on Electron Devices, Vol. 52, pp.1610-1615 (2005)
11. H. Xiao: Introduction to Semiconductror Manufacturing Technology, Prentice Hall (2001)
12. 莊達人, VLSI製造技術 (1990)
13. J. F. Gibbons: Ion implantation in semiconductors—Part II: Damage production and annealing, Proceedings of the IEEE, Vol. 60, pp.1062-1096 (1972)
14. S. Prussin, D. I, Margolese, R. N. Tauber: Formation of Amorphous Layers by Ion-implatation, Journal of Applied Physics, Vol. 57, pp.180-185 (1985)
15. S. Wolf, Silicon Processing for the VLSI Era, Vol. I, Ch. 9, Lattice Press (1985)
16. R. B. Fair: Damage Removal Dopant Diffusion Tradeoffs in Ultra-Shallow Implanted P+-N Junctions, IEEE Transaction on Electron Devices, Vol. 37, pp.2237-2242 (1990)
17. Th. Feudel, M. Horstmann, L. Herrmann, M. Herden, M. Gerhardt, D. Greenlaw, P. Fisher, J.Kluth: Process Integration Issue with Spike, Flash and Laser Anneal Implementation for 90 and 65nm Technologies, 14th International Conference on Advances Thermal Processing of Semiconductor (2006)
18. E. pop, S. Sinha and K. E. Goodson: Heat Generation and Transport in Nanometer-Scale Transistors, Proceeding of the IEEE, Vol. 94, pp.1587-1601 (2006)
19. A. Colin, P. Morin, F. Cacho, H. Bono, R. Beneyton, M. Bidaud, D. Mathiot and E. Fogarassy: Simulation of the Sub-melt Laser Anneal Process in 45 CMOS Technology-Application to the Thermal Pattern Effects, Materials Science and Enginnering B-Advanced Functional Solid-State Materials, Vol. 154, pp.31-34 (2008)
20. H. J. Sung, I. M. Lu and S. C. Chang: Effect of Excimer Laser Annealing through Oxide, ASID'99: Proceedings of the 5th Asian Symposium on Information Display, pp.101-104 (1999)
21. K. Thompson, Y. B. Gianchandani: Direct Silicon-Silicon Bonding by Electromagnetic Induction Heating, Journal of Microelectromechanical System, Vol. 11, pp.285-292 (2002)
22. N. K. Budraa, H. W. Jackson, M. T. Pike and J. Mai: Microwave induced direct bonding of single crystal silicon wafers, Proc. 12th IEEE International Conference on Micro Electro Mechanical Systems, pp.490-492 (1999)
23. C. A. Balanis: Advanced Engineering Electromagnetics, New York, Willy (1989)
24. K. Thompson, J. H. Booske, Y. B. Gianchandani and R. F. Cooper: Electromagnetic Annealing for the 100nm Technology Node, IEEE Electron Device Letters, Vol. 23, pp.127-129 (2002)
25. R. B. Liebert, S. R. Walther, S. B. Felch, Z. Fang, B. O. Peterson and D. Hacker: Plasma Doping system for 200 and 300mm wafers, 2000 International Conference on Ion Implantation Technology, Proceedings, pp.472-475 (2000)
26. K. Thompson, J. H. Booske, R. L. Ives, J. Lohr, Y. A. Gorelov, K. Kajiwara: Millisecond Microwave Annealing: Reaching the 32nm Node, Silicon Front-End Junction Formation-Physics and Technology, Vol. 810, pp.209-214 (2004)
27. International Technology Roadmap for Semiconductors, published by the Semiconductor Industry Association and found at http://www.itrs.net
28. T. L. Alford, D. C. Thompson, J. W. Mayer and N. D. Theodore: Dopant activation in ion implanted silicon by microwave annealing, Journal of Applied Physics, Vol. 106, No. 114902 (2009)
29. J. N. Lee, Y. W. Choi, B. J. Lee and B. T. Ahn: Microwave-induced low-temperature crystallization of amorphous silicon thin film, Jounral of Applied Physics, Vol. 82, pp.2918-2921 (1997)
30. R. Rao and G. C. Sun: Microwave annealing enhances Al-induced lateral crystallization of amorphous silicon thin film, Journal of Crystal Growth, Vol. 273, pp.68-73 (2004)
31. J. H. Ahn, J. N. Lee, Y. C. Kim and B. T. Ahn: Microwave-induced low temperature crystallization of amorphous Si thin film, Current Applied Physics, Vol. 2, pp.135-139 (2002)
32. J. F. Schulze, H. N. Beushausen, T. Hansmann, L. Korte and B. Rech: Accelerated interface defect removal in amorphous/crystalline siliconheterostructures using pulsed annealing and microwave heating, Applied Physics Letters, Vol.95, No. 182108 (2009)
33. S.C. Fong, C. Y. Wang, T. H. Chang and T. S. Chin: Crystallization of amorphous Si film by microwave annealing with SiC susceptors, Applied Physics Letters, Vol.94, No. 102104 (2009)
34. S. G. Sundaresan, M. V. Rao, Y. L. Tian, M. C. Ridgway, J. A. Schreifels and J. J. Kopanski: Ultrahigh-temperature microwave annealing of Al+- and P+- implanted 4H-SiC, Journal of Applied Physics, Vol. 101, No. 073708 (2007)
35. Z. Cao, Z. Wang, N. Yoshikawa and S. Taniguchi: Microwave heating origination and rapid crystallization of PZT thin films in separated H field, Journal of Physics D: Applied Physics, Vol. 41, No. 092003 (2008)
36. N. A. Mahadik, S. B. Qadri, S. G. Sundaresan, M. V. Rao, Y. Tian and Q. Zhang: Effects of microwave annealing on crystalline quality of ion-implanted SiCepitaxial layers, Surface & Coating Technology, Vol. 203, pp.2625-2627 (2007)
37. A.Z. Simo˜es, M.A. Ramı´rez, B.D. Stojanovic, E. Longo and J.A. Varela: The effect of microwave annealing on the electrical characteristics of lanthanum doped bismuth titanate films obtained by the polymeric precursor method, Applied Surface Science, Vol. 252, pp.8471-8475 (2006)
38. S. G. Sundaresan, Y. L. Tian, M. C. Ridgway, N. A. Mahadik, S. B. Qadri and M. V. Rao: Solid-state microwave annealing of ion-implanted 4H–SiC, Nuclear Instruments and Methods in Physics Research B, Vol. 261 pp.616–619 (2007)
39. Y. W. Choi, J. N. Lee, T. W. Jang and B. T. Ahn: Thin-Film Transistors Fabricated with Poly-Si Films Crystallized at Low Temperature by Microwave Annealing, IEEE Electron Device Letters, Vol. 20, pp.2-4 (1999)
40. Y. L. Lu, F. K. Hsueh, K. C. Huang, T. Y. Cheng, J. M. Kowalski, J. E. Kowalski, Y. J. Lee, T. S. Chao and C.Y. Wu: Nanoscale p-MOS Thin-Film Transistor with TiN Gate Electrode Fabricated by Low-Temperature Microwave Dopant Activation, IEEE Electron Device Letters, Vol. 31, pp.437-439 (2010)
41. T. L. Alford, T. Tang, D. C. Thompson, S. Bhagat, J. W. Mayer: Influence of microwave annealing on direct bonded silicon wafers, Thin Solid Films, Vol.516 pp.2158– 2161 (2008)
42. S. M. Sze: Physics of Semiconductor Devices, 2nd edition, Wiley, pp.31-32 (1981)
43. 汪建民等人:材料科學叢書2 材料分析,中國材料科學學會, pp.383-411 (1998)
44. D.C. Harris: Quantitative Chemical Analysis, 6th edition, Freeman, pp.530-531 (2002)
45. C.-H. Jan, M. Agostinelli, M. Buehler, Z.-P. Chen, S.-J. Choi, G. Curello, H. Deshpande, S. Gannavaram, W. Hafez, U. Jalan, M. Kang, P. Kolar, K. Komeyli, B. Landau, A. Lake, N. Lazo, S.-H. Lee, T. Leo, J. Lin, N. Lindert, S. Ma, L. McGill, C. Meining, A. Paliwal, J. Park, K. Phoa, I. Post, N. Pradhan, M. Prince, A. Rahman, J. Rizk, L. Rockford, G. Sacks, A. Schmitz, H. Tashiro, C. Tsai, P. Vandervoorn, J. Xu, L. Yang, J.-Y. Yeh, J. Yip, K. Zhang, Y. Zhang, P. Bai: A 32nm SoC Platform Technology with 2 nd Generation High-k/Metal Gate Transistors Optimized for Ultra Low Power, High Performance, and High Density Product Applications, IEEE International Electron Devices Meeting, pp.647-650 (2009)
46. C. C. Huang, H. Y. Chen and S. B. Lee: An Efficient Threshold Voltage Control in Complementary Metal–Oxide–Semiconductor Field Effect Transistor Using Spacer Stress Engineering, Japanese Journal of Applied Physics, Vol. 49, No. 070204 (2010)