研究生: |
陳建明 Chen, Chien-Ming |
---|---|
論文名稱: |
二硫化鎢末端接觸場效電晶體蕭特基能障分析 Analysis of Schottky barrier of tungsten disulfide field-effect transistor with end-bonded contacts |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
朱英豪
Chu, Ying-Hao 李奎毅 Lee, Kuei-Yi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 二硫化鎢 、末端接觸 、蕭特基能障 |
外文關鍵詞: | Tungsten disulfide, End-bonded contacts, Schottky barrier |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過渡金屬二硫族化物(Transition-metal dichalcgenides,TMDCs)為二維層狀材料 具有多樣的特性,不管是在電性,光學,物理及化學特性都有很好的表現 ,且導電特性上更可以分為絕緣性、半導體性、類金屬性。而在金屬與半導體的接觸特性一直是一個眾所皆會討論的重要議題,有別於一般傳統的上端接觸結構(Top-bonded contact structure)有較大的接觸電阻及較差的載子注入,在此本論文將探討一個較小的接觸電阻及更有效的載流子注入方法。因此提出了末端接觸結構(End-bonded contact structure)的設計,在金屬與半導體上有更短的接觸鍵結,更多的軌域混成。 預先度上Pt / Ti的晶種層(Seeding layer) 再經由化學氣相沉積(Chemical vapor deposition,CVD)的方式形成末端接觸結構。 WS2場效電晶體的電性表現, 電流密度可達到76.85 uA/um,載子遷移率為43.92 cm2 / Vs。次臨限擺幅 = 149 mV/dec,開關比約為103,蕭特基 能障272 meV接勝過同一通道上的上端接觸結構。而末端與上端接觸結構兩者的蕭特機能帳障高度差將影響整體元件特性,MIT的現象也在WS2元件傳輸特性被觀察到。
Transition-metal dichalcogenides (TMDCs) are two-dimensional layered materials with various properties, which are excellent in electrical, optical, physical and chemical properties, and have better electrical conductivity. It can be classified into insulating, semiconducting, and metallic. The contact characteristics between metal and semiconductor have always been an important topic that everyone will
discuss. Different from the traditional top-bond contact structure, there is a large contact resistance and poor carrier injection. This paper will explore a smaller contact resistance and a more efficient method of carrier injection. Therefore, an end-bond contact structure has been proposed, which has shorter contact bonding between metal and semiconductor. More orbital mixes. A seed layer of Pt/Ti is
preliminarily formed and a terminal contact structure is formed by chemical vapor deposition (CVD). The electrical performance of WS2 field effect transistor, the current density can reach 76.85 A/m, and the carrier mobility is 43.92 cm2/Vs.The subthreshold swing = 149mV/dec, the switch ratio is about 103, and the Schottky
barrier 272 meV wins over the upper contact structure of the same channel.The difference in the height of the Schottky barrier between the end and the upper contact structure will affect the overall component characteristics, and the MIT phenomenon is also observed in the WS2 component transmission characteristics.
[1] https://nextexx.com/undeserved-nobel-prizes-transistor/.
[2] https://en.wikipedia.org/wiki/JohnBardeen:
[3] http:// microblog.routed.net/ 2006/12/12 shockleys-and-pearsons-bipolarjunction-
transistor.
[4] http://en.wikipedia.org/wiki/Integrated/circuit.
[5] http://canacopegdl.com/keyword/intel-i7-die.html.
[6] http://www.nber.org/papers/w24553.
[7] http:// semiconductordevice.net/ semiconductorEquipment/ semiconductorroadmap.
[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically
thin carbon films,” Science, vol. 306, pp. 666–, Oct. 2004.
[9] http://www.nature.com/articles/nnano.2014.207.
[10] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam,
“Emerging device applications for semiconducting two-dimensional transition
metal dichalcogenides,” ACS Nano, vol. 8, pp. 1102–1120, Feb. 2014.
[11] H. Liu, A. T. Neal, and P. D. Ye, “Channel length scaling of mos2 mosfets,”
ACS Nano, vol. 6, pp. 8563–8569, Oct. 2012.
[12] F. Zhang and J. Appenzeller, “Tunability of short-channel effects in mos2
field-effect devices,” Nano Lett., vol. 15, pp. 301–306, Jan. 2015.
[13] K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu,
J. Xiong, Q. Liu, and J. He, “Sub-10 nm nanopattern architecture for 2d material
field-effect transistors,” Nano Lett., vol. 17, pp. 1065–1070, Feb. 2017.
[14] H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou,
and P. D. Ye, “Switching mechanism in single-layer molybdenum disulfide
transistors: An insight into current flow across schottky barriers,” ACS Nano,
vol. 8, pp. 1031–1038, Jan. 2014.
[15] A. D. Franklin and Z. Chen, “Length scaling of carbon nanotube transistors,”
Nature Nanotechnology, vol. 5, pp. 858–, Nov. 2010.
[16] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi,
K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L.
Shepard, and C. R. Dean, “One-dimensional electrical contact to a twodimensional
material,” Science, vol. 342, pp. 614–, Nov. 2013.
[17] Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu, J. Luo, W. Yin, E. Li, S. Dong,
P. Ye, and X. Duan, “Contacts between two- and three-dimensional materials:
Ohmic, schottky, and p?n heterojunctions,” ACS Nano, vol. 10, pp. 4895–
4919, May 2016.
[18] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang,
“The chemistry of two-dimensional layered transition metal dichalcogenide
nanosheets,” Nature Chemistry, vol. 5, pp. 263–, Mar. 2013.
[19] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S.
Strano, “Electronics and optoelectronics of two-dimensional transition metal
dichalcogenides,” Nature Nanotechnology, vol. 7, pp. 699–, Nov. 2012.
[20] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of
structural, vibrational and electronic properties of graphene-like mx2 (m=mo,
nb, w, ta; x=s, se, te) monolayers,” Physica B: Condensed Matter, vol. 406,
no. 11, pp. 2254–2260, 2011.
[21] H. Yuan, H. Wang, and Y. Cui, “Two-dimensional layered chalcogenides:
From rational synthesis to property control via orbital occupation and electron
filling,” Acc. Chem. Res., vol. 48, pp. 81–90, Jan. 2015.
[22] M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,”
Chem. Rev., vol. 113, pp. 3766–3798, May 2013.
[23] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the
electronic structure of the transition metal sulfide ts2,” Phys. Rev. B, vol. 83,
pp. 245213–, June 2011.
[24] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V.
Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc Natl
Acad Sci U S A, vol. 102, pp. 10451–, July 2005.
[25] H. Li, J. Wu, Z. Yin, and H. Zhang, “Preparation and applications of mechanically
exfoliated single-layer and multilayer mos2 and wse2 nanosheets,” Acc.
Chem. Res., vol. 47, pp. 1067–1075, Apr. 2014.
[26] https:// www.amazon.com/ silicon-vlsi-technology-fundamentals-practice/ dp/
0130850373
[27] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu,
Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of
high-quality monolayer ws2 layers on sapphire and imaging its grain boundary,”
ACS Nano, vol. 7, pp. 8963–8971, Oct. 2013.
[28] I. Bilgin, F. Liu, A. Vargas, A. Winchester, M. K. L. Man, M. Upmanyu,
K. M. Dani, G. Gupta, S. Talapatra, A. D. Mohite, and S. Kar, “Chemical
vapor deposition synthesized atomically thin molybdenum disulfide with
optoelectronic-grade crystalline quality,” ACS Nano, vol. 9, pp. 8822–8832,
Sept. 2015.
[29] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S.
Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area
and highly crystalline mos2 thin layers on insulating substrates,” Nano Lett.,
vol. 12, pp. 1538–1544, Mar. 2012.
[30] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek,
“Effects of lower symmetry and dimensionality on raman spectra in twodimensional
wse2,” Phys. Rev. B, vol. 88, pp. 195313–, Nov. 2013.
[31] K. K. H. Smithe, C. D. English, S. V. Suryavanshi, and E. Pop, “Intrinsic
electrical transport and performance projections of synthetic monolayer
mos2devices,” vol. 4, no. 1, pp. 011009–, 2016.
[32] Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W.
Chu, and L.-J. Li, “Wafer-scale mos2 thin layers prepared by moo3 sulfurization,”
Nanoscale, vol. 4, no. 20, pp. 6637–6641, 2012.
[33] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang,
Y.-C. Yu, J. Wang, C.-S. Chang, L. Li, and T.-W. Lin, “Synthesis of large-area mos2 atomic layers with chemical vapor deposition,” Advanced materials
(Deerfield Beach, Fla.), vol. 24, pp. 2320–5, May 2012.
[34] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht,
C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and
R. Bratschitsch, “Photoluminescence emission and raman response of monolayer
mos2, mose2, and wse2,” Opt. Express, vol. 21, no. 4, pp. 4908–4916,
2013.
[35] X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon
and raman scattering of two-dimensional transition metal dichalcogenides
from monolayer, multilayer to bulk material,” Chem. Soc. Rev., vol. 44, no. 9,
pp. 2757–2785, 2015.
[36] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang,
C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer
sheets of ws2 and wse2,” Nanoscale, vol. 5, no. 20, pp. 9677–9683, 2013.
[37] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J.
Shin, S. Park, and W. J. Yoo, “Fermi level pinning at electrical metal contacts
of monolayer molybdenum dichalcogenides,” ACS Nano, vol. 11, pp. 1588–
1596, Feb. 2017.
[38] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, “The unusual mechanism
of partial fermi level pinning at metal?mos2 interfaces,” Nano Lett., vol. 14,
pp. 1714–1720, Apr. 2014.
[39] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study
of metal contacts to monolayer transition-metal dichalcogenide semiconductors,”
Phys. Rev. X, vol. 4, pp. 031005–, July 2014.
[40] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to twodimensional
semiconductors,” Nature Materials, vol. 14, pp. 1195–1205,
Nov. 2015.
[41] B. Tang, Z. G. Yu, L. Huang, J. Chai, S. L. Wong, J. Deng, W. Yang, H. Gong,
S. Wang, K.-W. Ang, Y.-W. Zhang, and D. Chi, “Direct n- to p-type channel
conversion in monolayer/few-layer ws2 field-effect transistors by atomic nitrogen
treatment,” ACS Nano, vol. 12, pp. 2506–2513, Mar. 2018.
[42] L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung,
R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride molecular doping
technique on 2d materials: Ws2 and mos2,” Nano Lett., vol. 14, pp. 6275–
6280, Nov. 2014.
[43] Y. Ma, B. Liu, A. Zhang, L. Chen, M. Fathi, C. Shen, A. Abbas, M. Ge,
M. Mecklenburg, and C. Zhou, “Reversible semiconducting-to-metallic phase
transition in chemical vapor deposition grown monolayer wse 2 and applications
for devices,” ACS nano, vol. 9, pp. –, June 2015.
[44] Y. Liu, H. Wu, H.-C. Cheng, S. Yang, E. Zhu, Q. He, M. Ding, D. Li, J. Guo,
N. O. Weiss, Y. Huang, and X. Duan, “Toward barrier free contact to molybdenum
disulfide using graphene electrodes,” Nano Lett., vol. 15, pp. 3030–3034,
May 2015.
[45] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun,
R. Kapadia, H. Fang, R. M. Wallace, and A. Javey, “Mos2 p-type transistors
and diodes enabled by high work function moox contacts,” Nano Lett.,
vol. 14, pp. 1337–1342, Mar. 2014.
[46] T. Chu and Z. Chen, “Understanding the electrical impact of edge contacts in
few-layer graphene,” ACS Nano, vol. 8, pp. 3584–3589, Apr. 2014.
[47] M. H. D. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie, C.-J. Kim, D. A.
Muller, D. C. Ralph, and J. Park, “Atomically thin ohmic edge contacts between
two-dimensional materials,” ACS Nano, vol. 10, pp. 6392–6399, June
2016.
[48] Z. Yang, C. Kim, K. Y. Lee, M. Lee, S. Appalakondaiah, C.-H. Ra, K. Watanabe,
T. Taniguchi, K. Cho, E. Hwang, J. Hone, and W. J. Yoo, “A fermi-levelpinning-
free 1d electrical contact at the intrinsic 2d mos2?metal junction,”
Adv. Mater., vol. 31, pp. 1808231–, June 2019.
[49] J.-R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Luo, and
R. K. Kawakami, “Control of schottky barriers in single layer mos2 transistors
with ferromagnetic contacts,” Nano Lett., vol. 13, pp. 3106–3110, July 2013.
[50] H. . Qiu, L. . Pan, Z. . Yao, J. . Li, Y. . Shi, and X. . Wang, “Electrical characterization
of back-gated bi-layer mos2 field-effect transistors and the effect
of ambient on their performances,” Appl. Phys. Lett., vol. 100, pp. 123104–,
Mar. 2012.
[51] T. Fujimoto and K. Awaga, “Electric-double-layer field-effect transistors with
ionic liquids,” Phys. Chem. Chem. Phys., vol. 15, no. 23, pp. 8983–9006,
2013.
[52] Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus
by ionic-liquid gating,” ACS Nano, vol. 9, pp. 3192–3198, Mar. 2015.
[53] A. Allain and A. Kis, “Electron and hole mobilities in single-layer wse2,”
ACS Nano, vol. 8, pp. 7180–7185, July 2014.
[54] D. Braga, I. Gutiérrez Lezama, H. Berger, and A. F. Morpurgo, “Quantitative
determination of the band gap of ws2 with ambipolar ionic liquid-gated
transistors,” Nano Lett., vol. 12, pp. 5218–5223, Oct. 2012.
[55] C.-H. Chu, H.-C. Lin, C.-H. Yeh, Z.-Y. Liang, M.-Y. Chou, and P.-W. Chiu,
“End-bonded metal contacts on wse2 field-effect transistors,” ACS Nano,
vol. 13, pp. 8146–8154, July 2019.
[56] D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical
transport properties of single-layer ws2,” ACS Nano, vol. 8, pp. 8174–
8181, Aug. 2014.
[57] B. Radisavljevic and A. Kis, “Mobility engineering and a metal?insulator
transition in monolayer mos2,” Nature Materials, vol. 12, pp. 815–, June
2013.
[58] S. Ghatak, A. N. Pal, and A. Ghosh, “Nature of electronic states in atomically
thin mos2 field-effect transistors,” ACS Nano, vol. 5, pp. 7707–7712, Oct.
2011.
[59] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. Castro Neto,
J. Martin, S. Adam, B. ?zyilmaz, and G. Eda, “Transport properties of
monolayer mos2 grown by chemical vapor deposition,” Nano Lett., vol. 14,
pp. 1909–1913, Apr. 2014.
[60] X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee, D. A. Chenet,
X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe,
T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone, “Multi-terminal
transport measurements of mos2 using a van der waals heterostructure device
platform,” Nature Nanotechnology, vol. 10, pp. 534–, Apr. 2015.