研究生: |
林谷韋 Lin gu-wei |
---|---|
論文名稱: |
渦漩誘發振動之自然耦合現象的數值研究 Numerical analysis on natural coupling between fluid and structure due to vortex-induced vibration |
指導教授: |
白寶實
洪祖全 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 渦漩流動 、渦漩誘發振動 、PISO數值法 、Lock-in現象 、自然耦合流場 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在於觀察低雷諾數下的層流(Laminar flow)流場中,結構體在承受流體的沖擊後,於結構體下游流域所形成的渦漩流動、流場變化,及渦漩與結構間的相互作用、運動型態等等,並探討渦漩誘發振動(Vortex-induced vibration)現象的發生,與結構形成破壞性的振盪現象。研究中運用計算流體力學的方式,求解此類問題;以PISO數值法將質量守恆方程式與Navier-Stokes動量方程式作一相互交替運算,並與結構體的運動方程式相結合,獲得流場中結構體的位移量,使流場系統中的結構因感受到流場變化的作用力影響而自然的產生運動;並於不同流場條件下,模擬流場變化與結構間可能的運動形態,觀察渦漩流動與結構體兩者之間頻率相對變化的關係,進一步的著手分析發生Lock-in現象時的流場變化與結構振動型態。在探討自然耦合流場的結構體運動與渦漩流動現象中,成功模擬出發生Lock-in現象時的圓柱體運動形式與渦漩流動;在自然耦合的流場,圓柱體會依循8字形軌跡運動,且其運動形式會與Lock-in現象的發生與否有相當的關聯性。另外,在二維的雙圓柱層流流場現象的探討方面,以並列(side-by-side) 與前後(tandem) 的圓柱體流場排列方式下,調整圓柱間相對距離變化,觀察對圓柱本身受力與渦漩結構的形成所造成的影響、渦漩流動型態轉變,及雙圓柱流場所存在的相互干擾現象。
參 考 文 獻
1. Bishop, R.E.D., and Hassan, A.Y., “The lift and Drag Forces on a Circular Cylinder in a Flowing Field“, Proc. Roy. Soc.(London), Ser.A, 277, pp. 51-75, 1964.
2. Koopman, G.H., “The Vortex Wakes of Vibrating Cylinders at Low Reynolds Numbers”, J. Fluid Mech., Vol. 27, pp. 501-512, 1967.
3. Feng, C. C., “The Measurement of Vortex-Induced Effects in Flow Past Stationary and Oscillating Circulator and D-Section Cylinder”, M. Sc. Thesis, University of British Colimbia, 1968.
4. Griffin. O.M., “The Unsteady Wake of an Oscillating Cylinder at Low Reynolds Number”, J. Applied Mech., Vol. 38, pp. 729-738, 1971.
5. Griffin, O.M., and Ramberg, S.E., “Some Recent Studies of Vortex Shedding with Application to Marine Tubulars and Riser”, ASME Journal of Energy Research and Technology, Vol.104, pp. 2-13, 1982.
6. Ongoren, A., and Rockwell, D., “Flow Structure From an Oscillating Cylinder. Part 1:Mechanisms of Phase Shift and Recovery in the Near Wake”, J. Fluid Mech., Vol. 191, pp. 197-223, 1988a.
7. Williamson, C.H.K., and Roshko, A., “Vortex Formation in the Wake of an Oscillating Cylinder”, J. Fluids and Structures, Vol. 2, pp. 355-381, 1988.
8. Parkinson, G., “Phenomena and Modeling of Flow-Induced Vibrations of Bluff Bodies”, Progress in Aerospace Sciences, Vol. 26, pp. 169-224, 1989.
9. Hurlbut, M., Spaulding, M.L. and White, F.M., “Numerical Solution for Laminar Two Dimensional Flow about a Cylinder Oscillating in a Uniform Stream”, ASME Journal of Fluids Engineering, Vol. 104, pp. 214-222, 1982.
10. Mittlal, S., and Tezduyar, T.E., “A Finite Element Study of Incompressible Flows Past Oscillating Cylinders and Airfoils”, Int. J. for Numerical Methods in Fluids, Vol. 15, pp. 1073-1118, 1992.
11. Blackburn, H., and Henderson, R., “Lock-in Behavior in Simulated Vortex-Induced Vibration”, Experimental Thermal and Fluid Science, Vol. 12, No. 2, pp. 184-189, Feb. 1996.
12. Varaprasad Patnaik, B.S., Aswatha Narayana, P.A., Seetharamu, K.N., “Numerical Simulation of Vortex Shedding Past a Circular Cylinder under the Influence of Buoyancy”, Int. J. Heat and Mass Transfer, Vol. 42, pp. 3495-3507, 1999.
13. Ramaprian, B.R., and Zheng Y., “Near Field of the Tip Vortex Behind an Oscillating Rectangular Wing”, AIIA Journal, Vol.36, No.7, pp.1263-1269, 1998.
14. Chung, Jin.S., Whitney, A.K., and Lezius, D., “Flow-Induced Torsional Moment and Vortex Suppression for a Circular Cylinder with Cables”, Proceedings of the International Offshore and Polar Engineering Conference, Vol. 3, pp. 447-467, 1994.
15. Sakamoto, H., and Haniu, H., “Optimum Suppression of Fluid Forces Acting on a Circular Cylinder”, ASME Journal of Fluids Engineering, Vol. 116, No. 2, pp. 221-222, 1994.
16. Hiejima, S., Nomura, T., Kimura, K., and Fujino, Y., “Numerical Study on the Suppression of the Vortex-Induced Vibration of a Circular Cylinder by Acoustic Excitation”, J. Wind Engineering and Industrial Aerodynamics,Vol.67, pp. 325-335,1997.
17. Abbassian, F., and Moros, T., “Use of Air-Bubble Spoilers to Suppress Vortex-Induced Vibrations of Risers”, SPE Production & Facilities, Vol. 11, No. 1, pp. 35-47, 1996.
18. Zdravkovich, M.M., “Review of Flow Interference between Two Circular Cylinders in Various Arrangements,” J. Fluids Eng., Vol. 99, pp. 618-633, 1977.
19. King, R., and Johns, D.J., “Wake Interaction Experiments with Two Flexible Circular Cylinders in Flowing Water,” J. Sound Vib., Vol. 45, No. 2, pp. 259-283, 1976.
20. Jendrzejczyk, J.A., and Chen, S.S., and Wambsganss, M.W. “Dynamic Response of a Pair of Circular Tubes Subjected to Liquid Cross Flow,” J. Sound Vib., Vol. 67, No. 2, pp. 263-273, 1979.
21. Blenvins, Robert D., “Flow-Induce Vibration”, Robert E. Krieger publishing company, 1986.
22. Griffin, O.M., and Ramberg, S.E., “The Effects of Synchronized Cylinder Vibrations on Vortex Formation and Strength, Velocity Fluctuations, and Mean Flow”, Paper E-3, Presented at the Symposium on Flow Induced Structural Vibrations, Held in Karlsruhe, Germany, 14-16, August, 1972.
23. Lienhard, J.H., “Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders”, Washington State University College of Engineering, Research Division Bulletin, 300, 1966.
24. Roshko, A., ”Experiments on the Flow Past a Cylinder at Vary High Reynolds Number”, J. Fluid Mech., 10, pp. 345-356, 1961.
25. Griffin, O. M., and Hall M. S., “Review-Vortex Shedding Lock-on and Flow Control in Bluff Body Wakes”, ASME Journal of Fluids Engineering, Vol. 113, pp. 527-537, 1991.
26. Griffin, O.M., and Ramberg, S.E., “Vortex Shedding From a Cylinder Vibrating in Line With an Incident Uniform Flow”, J. Fluid Mech., Vol. 75, pp. 257-271, 1976.
27. Tanida, Y., Okajima, A., and Watanabe, Y., “Stability of a Circular Cylinder Oscillating in Uniform Flow or in a Wake”, J. Fluid Mech., Vol. 61, Part 4, pp. 769-784, 1973.
28. Tatsuno, M., “Vortex Streets Behind a Circular Cylinder Oscillating in the Direction of Flow”, Bull. Res. Inst. Appl. Mech., Kyushu University, Vol. 36, pp. 25-37, 1972.
29. Zdravkovich, M. M., “Flow Induced Oscillations of Two Interfering Circular Cylinders.”, Int. Conf. on Flow Induced Vibrations in Fluid Engineering, Reading, England, Sept. 14-16, 1982, Paper No. D2.,1982.
30. Zdravkovich, M. M., “Classification of Flow-Induced Oscillations of Two Parallel Circular Cylinders in Various Arrangement.”, ASME In Sym. On Flow-Induced Vibration, Vol. 2, ppl1-18,1984.
31. Achenbach,E., “Distribution of Local Pressure and Skin Friction around a Circular Cylinder in Cross-Flow up to Re=5 106 ”, J. Fluid Mech.,Vo. 34,No. 3,pp.625-639, 1968.
32. King, R., “A Review of Vortex Shedding Research and Its Application”, Ocean Engineering, Vol. 4, pp.141-171, 1977a.
33. Stansby, P.K. and Slaouti, A., “Simulation of Vortex Shedding Including Blockage by the Random-Vortex and Other Methods,” Int. J. Numerical Methods in Fluids, Vol. 17,pp. 1003-1013,1993.
34. Williamson, C. H. K., “Oblique and Parallel Models of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Numbers,” J. Fluid Mechanics, Vol. 206, pp.579-627, 1989.
35. Zhou C.Y., So R. M. C. and Lam K., “Vortex-Induced Vibration of an Elastic Circular Cylinder,” J. Fluids and Structures, Vol. 13,pp.165-189, 1999.