研究生: |
鄭伊芸 Cheng, Yi Yun |
---|---|
論文名稱: |
研究RELAP5/MOD3的虹吸破壞現象 The Study of the Phenomenon of Siphon Break using RELAP5/MOD3 |
指導教授: |
李敏
Lee, min |
口試委員: |
施純寬
Shih, Chunkuan 梁國興 Liang, Kuo-Shing 陳紹文 Chen, Shao-Wen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 虹吸破壞現象 、非能動 、流動特性 、核能安全 |
外文關鍵詞: | siphon break, passive, flow characteristic, nuclear safety |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
虹吸破壞現象是一種非能動的物理過程,池式快堆反應器的核能安全系統設計中利用該自然現象可有效減緩在事故狀況下冷卻劑的流失,避免爐心熔毀嚴重事故發生。虹吸破壞現象的研究具有重要的科學研究意義和工程應用價值。為深刻了解與認識虹吸破壞的相關機制,利用系統熱水流分析程式RELAP5模擬北京清華大學的虹吸破壞實驗平台的實驗結果。
研究中比對主管道中的液相流量、壓差和上水箱液位隨時間變化的模擬與實驗的結果,並對虹吸破壞現象的流動特性與兩相流相關機制進行分析。模擬結果與實驗數據和計算流體力學模擬結果進行比較,探討其中的差異。結果顯示虹吸破壞現象發生時會伴隨明顯的不穩定性,導致壓差的震盪。通過對不同下降管管徑與出口閥門不同開度的比較研究發現,系統阻力愈大其不穩定性愈強。同時也對兩相流中重要的壓降加乘因子進行深入研究。由於在實驗中管道的流體沒有完全充分發展,分析得到的摩擦加乘因子比RELAP5理論計算的值要大得多。
實際的核能裝置設計是一個完整的系統工程,需要同時對物理、熱流、材料等許多因素綜合考慮。就虹吸破壞現象而言,管道尺寸的選擇非常重要,一方面不宜太大,如本研究下降管徑不超過50 mm,否則可能對迴路壓力邊界的完整性構成威脅;一方面又不宜太小,太小難以有效發揮虹吸破壞作用而不能有效阻止水的流失,同時太小的尺寸可能也會帶來較大的流量不穩定性。
The phenomenon of siphon break is a passive physical process. It is important for the safety design of pool type Liquid Metal Fast Breeder Reactor (LMFBR) and spent fuel pool of the nuclear power plant adopted Light Water Reactors (LWRs). It can affectively mitigate the Loss of Coolant Accidents of LMFBR and spent fuel pool of LWRs. In the present study, the system thermal hydraulic code RELAP5/MOD3 is used to simulate the experimental results of siphon break apparatus of Beijing Tsinghua University.
The simulated results of flow rate in main pipe, pressure drop in downcomer and water level in upper tank over time are compared with the experimental results. The simulated results are also compared with the results of CFD (Computational Fluids Dynamics) analysis. The results have demonstrated that the general trends of the experimental results can be caught by RELAP5 code. Nevertheless, the time duration of siphon break phenomena as predicted by the code is significantly less than the experimental results. A detail analysis of the code simulation results has shown that the two phase multipliers as predicted by the code is about an order of magnitude smaller than the experimental results. It is believed that the difference is due to the assumption of fully developed flow in the code calculation.
Sensitivity studies of the different downcomer pipe diameter and outlet valve opening show that the instability of the flow is stronger when the resistance is larger.
[1] 彭燕‚ 张东辉. 中国实验快堆虹吸破坏装置两相流动分析[J]. 核科学与工程, 2009, 29(1): 33-38.
[2] 彭燕‚ 张东辉, 丁振鑫. 中国实验快堆虹吸破坏装置取钠口结构流体动力学分析[J]. 原子能科学技术, 2011, 45(1): 23-28.
[3] 彭燕, 张东辉, 丁振鑫. CEFR虹吸破坏装置两相流流动特性研究[J]. 中国原子能科学研究院年报, 2009: 6-7.
[4] 彭燕, 丁振鑫. 中国实验快堆虹吸破坏装置在管道断裂事故中两相流波动现象数值模拟研究[J]. 工业技术创新, 2014, 1(1): 71-77.
[5] 徐銤. 中国实验快堆的安全特性[J]. 核科学与工程, 2011, 31(2) :116-126.
[6] Kang, S. H., Ahn, H. S., Kim, J. M., Joo, H. M., Lee, K. Y., Seo, K., … & Kim, M. H. Experimental study of siphon breaking phenomenon in the real-scaled research reactor pool[J]. Nuclear Engineering and Design, 2013, 255: 28-37.
[7] Seo K, Kang S H, Kim J M , Lee K Y, Jeong N, Chi D Y, Yoon J, Kim M H. Experimental and numerical study for a siphon breaker design of a research reactor[J]. Annals of Nuclear Energy, 2012, 50: 94–102.
[8] 李百齐. 虹吸管出水断流装置的流体力学相似分析[J]. 船舶力学, 2003, 7(5) :39-44.
[9] 王显焕. 虹吸进水口真空破坏阀的直径[J]. 小水电, 2000(3) :18-21.
[10] 冯健‚ 贺群武‚ 周拥辉. 核电站之燃料水池冷却系统虹吸破坏管性能安全分析[J]. 原子能科学技术, 2014, 48(6): 997-1003.
[11] Code Development Team, RELAP5/MOD3 Code Manual, Vol.1~Vol.8, NUREG/CR-5535, 2006.
[12] RELAP-3D Code Development Team, RELAP-3D Code Manual, Vol1~Vol.4, INEEL-EXT-98-00834 Revision2.4, June 2005
[13] Parthasarathy U, Sundararajan T, Balaji C, Velusamy K, Chellapandi P, Chetal S C. Decay heat removal in pool type fast reactor using passive systems[J]. Nuclear Engineering & Design, 2012: 480–499.
[14] 秦晓斌. 非能动虹吸破坏实验平台的搭建[D]. 北京:北京清华大学, 2014.
[15] 夏少鹏. 非能动虹吸破坏实验机理研究[D]. 北京:北京清华大学, 2014.
[16] 王宁波. 虹吸破坏两相流压降实验研究[D]. 北京:北京清华大学, 2015.
[17] 郑伊芸. 基于计算流体力学非能动虹吸破坏机理研究[D]. 北京:北京清华大学, 2016.
[18] Munson, B. R., Young, D. F., & Okiishi, T. H. Fundamentals of fluid mechanics [J]. J. Wiley & Sons. , 2010: 415.
[19] Mirmanto M. Developing Flow Pressure Drop and Friction Factor of Water in Copper Microchannels[J]. Journal of Mechanics Engineering and Automation, 2013, 3:641-649.
[20] Al-Nassri S.A., Unny T. Developing laminar flow in the inlet length of a smooth pipe [J]. Applied Scientific Research, 1981, 36(5): 313-332.
[21] Lockhart, R.W. and Martinelli, R.C. Proposed correlation of data for isothermal two-phase two-component flow in pipes [J]. Eng. Prog., 1949, 45: 39.