研究生: |
丁昱嘉 Ting, Yu-Chia |
---|---|
論文名稱: |
微型產氫裝置之熱場分析 A Study of Heat Field in Micro Hydrogen Supplier |
指導教授: |
潘欽
Pan, Chin |
口試委員: |
潘欽
Pan, Chin 蘇育全 Su, Yu-Chuan 林清發 Lin, Tsing-Fa |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 產氫裝置 、紅外線測溫儀 、熱場 、甲醇重組器 |
外文關鍵詞: | hydrogen supplier, infrared thermometer, heat field, reformer |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對重組式甲醇燃料電池 (RMFC) 之前端氫氣來源設計一微熱交換型產氫裝置 (micro heat exchange-type hydrogen supplier, MHEHS),並對此產氫裝置以原位測量概念進行熱場研究。利用微機電技術 (MEMS) 將微型熱交換器 (MCHE) 與微型觸媒重組器 (MCR) 進行整合成長寬各為2 cm、厚度僅2.13 mm之微型產氫裝置。
將25℃常溫液態甲醇與氧氣混合進入產氫裝置,經過上層熱交換器與高溫產物發生熱交換和透過POM (Partial Oxidation of Methanol) 放熱反應產生之餘熱使其達到重組器工作溫度且利用高速攝影機進行流譜觀測確定液態甲醇進入重組器前完全乾化以防其毒化觸媒。當反應物達工作溫度進入下層甲醇重組器進行重組反應,本實驗利用紅外線測溫儀量測甲醇重組器觀測窗溫度分布和其變化情形進行熱場分析且其為非接觸式測量方法能最真實反應當時熱場情況。最後將利用氣相層析儀分析產物組成比例。
本研究針對不同液態甲醇與氧氣流量比例和加熱功率進行深入甲醇重組器之熱場分析與現象討論。並以原位測量概念發展一產氫裝置熱場分析之檢測方式。當固定氧氣比例改動甲醇流量和加熱功率,發現在加熱功率為22.5 W時,甲醇流量為0.25 sccm因高流量擁有較高氫氣產率為2.97×10-5 mole/s和較高熱效益達70.2%;而甲醇流量為0.04 sccm時則因重組器反應溫度較均勻擁有較高氫氣選擇率達77.3%,其中一氧化碳產率和選擇率則不管變化加熱功率或甲醇流量都維持低產量將有利於未來與燃料電池進行整合之目標。
Abstract
This study integrates successfully that a micro heat exchange-type hydrogen supplier (MHEHS) as a fuel supply source for a micro reforming methanol fuel cell (RMFC). The MHEHS is with dimension of 2 cm (L) × 2 cm (W) × 0.2 cm (T) and is composed of a micro-channel heat exchanger (MCHE, 2nd layer) and a micro channel reformer (MCR, 4th layer) by a micro machinery techniques. The present study focuses on the thermal field, especially the temperature distribution in the MCR
Liquid methanol (25℃) is mixed with oxygen and flowed through the front side of the MCHE. Evaporation of liquid methanol in the micro-channel is warrant through an external heat input and the generated from a partial oxidation of methanol (POM) in the MCR. The dynamic temperature distribution in the MCR during methanol reforming reacting is observed using a non-contact infrared thermometer (IR). The hot spots and the evolution of hot region can thus be cleanly visualized. The product composition after the POM is collected and analyzed by a gas chromatography (GC).
The effect of methanol flow rate, oxygen flow rate and heating power on the dynamic temperature distribution of the MCR and on the performance of the MHEHS are investigated. The results shows that when the VO2= 10 sccm,VMeOH= 0.25 sccm, and qpower= 22.5 W, the hydrogen production rate is the highest of 2.97×10-5 mole/s and thermal efficiency is 70.2 %. On the other hand, when the VO2 and qpowerkeep the same, while VMeOH is reduced to the stoichiometric value of 0.04 sccm, the hydrogen selectivity is the highest of 77.3 %. The yield rate and selectivity of carbon monoxide remains very low or zero in any Oxygen flowrate over 8 sccm.
[1] 台灣經濟部能源局, ”能源供給與消費流程圖,” 能源計年報.
[2] 石油巨頭英國石油公司,” 世界能源統計報告2013, 2013.
[3] R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel Cell Fundamentals,” John Wiley & Sons, Inc..
[4] 王誠,毛宗强,陳荣華,王革華,谢曉峰, “小型燃料电池的研究現狀與應用前景分析,” PROGRESS IN CHEMISTRY, Vol. 18 No. 1, 2006.
[5] D.E. Park, T.Kim, S.Kwon, C.K. Kim, E.Yoon,” Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells,” Sensors and Actuators A, Vol.135,pp.58–66,2007.
[6] O. Kwon, D.H. Yoon, J.J. Kim, “Silicon-based miniaturized reformer with methanol catalytic burner,” Chemical Engineering Journal, Vol. 140, pp. 466–472, 2008.
[7] T. Kim, “Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell,” international journal of hydrogen energy, Vol. 34, pp. 6790 – 6798, 2009.
[8] K.F. Lo and S.C. Wong, “A passively-fed methanol steam reformer with catalytic combustor heater,” international journal of hydrogen energy, Vol. 36, pp.10719-10726, 2011.
[9] V. Jaggi and S. Jayanti, “A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer,” Applied Energy, Vol.110, pp. 295–303, 2013.
[10] C. Pan and C.T. Lu, "Bubble dynamics for convective boiling in sillicon-based, converging and diverging microchannels," International Heat Transfer Conference vol. 28, p. 28-39, 2006.
[11] R.Y. Miura, F.C.C. Galeazzo, C.C. Tadini, J.A.W. Gut, “The effect of flow arrangement on the pressure drop of plate heat exchangers,” Chemical Engineering Science, Vol. 63, pp. 5386 – 5393,2008.
[12] H. Cao, G. Chen, Q. Yuan, “Thermal Performance of Crossflow Microchannel Heat Exchangers,” Ind. Eng. Chem. Res., Vol. 49, pp. 6215–6220, 2010.
[13] B. Mathew and H. Hegab, “Modeling non-adiabatic parallel flow microchannel heat exchangers,” International Journal of Thermal Sciences, Vol. 50, pp. 350-360, 2011
[14] T. Dang and J.T. Teng, “The effects of configurations on the performance of microchannel counter-flow heat exchangerseAn experimental study,” Applied Thermal Engineering, Vol. 31, pp. 3946-3955, 2011.
[15] T.L. Liu, B.R. Fu, C. Pan, ”Boiling two-phase flow and efficiency of co- and counter-current microchannel heat exchangers with gas heating,” International Journal of Heat and Mass Transfer, Vol. 55, pp. 6130–6141,2012.
[16] Y. Yang, G.L. Morini, J.J. Brandner, ” Experimental analysis of the influence of wall axial conduction on gas-to-gas micro heat exchanger effectiveness.” International Journal of Heat and Mass Transfer, Vol. 69, pp. 17–25, 2014
[17] L. Tadrist, "Review on two-phase flow instabilities in narrow spaces," International Journal of Heat and Fluid Flow, vol. 28, pp. 54-62, 2007.
[18] W.L. Chen, M.C. Twu, C. Pan,” Gas–liquid two-phase flow in micro-channels,” International Journal of Multiphase Flow, Vol. 28, pp. 1235–1247, 2002.
[19] S. Saisorn and S. Wongwises,” Flow pattern, void fraction and pressure drop of two-phase air–water flow in a horizontal circular micro-channel,” Experimental Thermal and Fluid Science, Vol. 32, pp. 748–760,2008.
[20] S. Saisorn and S. Wongwises, “An experimental investigation of two-phase
air–water flow through a horizontal circular micro-channel,” Experimental Thermal and Fluid Science, Vol. 33, pp. 306–315, 2009.
[21] M. Kaji, T. Sawai, Y. Kagi, T. Ueda,” Heat transfer and fluid dynamics of air–water two-phase flow in micro-channels,” Experimental Thermal and Fluid Science, Vol. 34,pp. 446–453, 2010.
[22] C.T. Lu and C. Pan, “Convective boiling in a parallel microchannel heat sink with a diverging cross section and artificial nucleation sites,” Experimental Thermal and Fluid Science, Vol. 35, 810–815, 2011.
[23] C.Y. Lee, S.J. Lee, C.C. Shen, C.T. Yeh, C.C. Chang,Y.M. Chang, “In-situ measurement of the local temperature distributions for the steam reforming of a methanol micro reformer by using flexible micro temperature sensors,” International journal of hydrogen energy, Vol. 3 6, pp. 2869 -2876, 2011.
[24] T.L. Liu and Chin Pan, “Infrared thermography for the measurements of boiling two-phase flow heat transfer in a microchannel,” 8th International Conference on Multiphase Flow ICMF 2013, 2013.
[25] Y. W. and K. Sefiane, ”Effects of Heat Flux, Vapour Quality, Channel Hydraulic Diameter on Flow Boiling Heat Transfer in Variable Aspect Ratio Micro-channels Using Transparent Heating,” International Journal of Heat and Mass Transfer, Vol. 55, pp. 2235–2243,2012.
[26] Y. Wanga, K. Sefiane, S. Harmand, “Flow Boiling in High-aspect Ratio Mini- and Micro-channels with FC-72 and Ethanol: Experimental Results and Heat Transfer Correlation Assessments,” Experimental Thermal and Fluid Science, Vol. 36, pp. 93–106, 2012.
[27] S. Szczukiewicz, N. Borhani, J.R. Thome, “Two-phase Heat transfer and High-speed Visualization of Refrigerant Flows in 100 × 100 m2 Silicon Multi-microchannels,” International journal of refrigeration, Vol. 36, pp. 402-413, 2013.
[28] 楊龍杰, “認識微機電 1 ed.,”滄海書局, 2001.
[29] S.P. Lai, K.Y. Huang, H.C. Peng, Y.J. Huang, F.G. Tseng, “Low Temperature POM Micro-Reformer with Silicon Nano-Wire Supported Nano Catalysts,” Micro TAS 2013, 2013.
[30] F. ResearchIR, “FLIR R&D 軟體1.2版使用說明書,” Publ. No. T559464 Rev. a449-traditional chinese (ZH-TW), 2010.
[31] M.J. Moran, H. N. Shapiro, D.D. Boettner, M.B. Bailey, “Principles of Engineering Thermodynamics SI version.”
[32] J.M.Smith, H.C. Van Ness, M.M. Abbott, “化工熱力學,” The McGraw-Hill Companies, Inc
[33] K.M.de Reuck and R.J.B.Craven, ”Methanol, International thermodynamic tables of the fluid state- 12,” IUPAC, Blackwell Scientific Publications, 1993.
[34] B.A. Younglove, “Thermophysical Properties of Fluids. I. Argon, Ethylene, Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen,” J. Phys. Chem. Ref. Data, 1982.
[35] W. Wagner and A.Pruss, ”The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use,” J. Phys. Chem. Ref. Data, pp.387-535, 2002.
[36] J.W. Leachman, R.T. Jacobsen, E.W. Lemmon, “Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen,” J. Phys. Chem. Ref. Data, 2008.
[37] J.F. Ely, J.W. Magee, W.M. Haynes, ”Thermophysical Properties for Special High CO2 Content Mixtures, Research Report RR-110,” Gas Processors Association, 1987.
[38] R.D. McCarty, ”Correlations for the Thermophysical Properties of Carbon Monoxide,” National Institute of Standards and Technology, 1989.
[39] F. P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, “Fundamentals of Heat and Mass Transfer Sixth Edition,” 2005.
[40] 王大庚, 鄧夫, 曹培熙, ”基本近代物理學,” 徐氏文教基金會, 2009.
[41] P. Griffiths and J.A. de Hasseth, ”Fourier Transform Infrared Spectrometry 2nd. Wiley-Blackwell.,” ISBN 0-471-19404-2., 2007.
[42] C. V. Loan, ”Computational Frameworks for the Fast Fourier Transform,” SIAM, 1992.