簡易檢索 / 詳目顯示

研究生: 黃琬萱
Huang, Wan-Hsuan
論文名稱: 含裂縫奈米複材三明治結構之能量釋放率研究
Energy Release Rate of Sandwich Structure with MWNTs/Polymer Nanocomposite as Core Material Containing Facesheet/Core Debonding
指導教授: 葉孟考
Yeh, Meng-Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 92
中文關鍵詞: 三明治結構脫膠奈米複合材料末端刻痕彎曲測試能量釋放率奈米碳管
外文關鍵詞: Sandwich structure, Debonding, Nanocomposites, End-notched flexure, Strain energy release rate, Carbon nanotube
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三明治結構為最常見之複合材料結構,係由高比強度(Strength-to-Weight)及高比勁度(Stiffness-to-Weight)之面材(Facesheet)與質輕之芯材(Core Material)膠結構成,因此易於面材與芯材之接合面產生裂縫形成脫膠(Debonding),進而影響整體結構強度造成損壞。
      本文採用由兩複合材料構成之奈米複材三明治結構;面材為碳纖維疊層板,芯材為多壁奈米碳管/環氧樹脂高分子材料,以環氧樹脂為黏著劑接合。文中利用田口法(Taguchi’s Method),以面材疊層角度、芯材多壁奈米碳管含量與預裂縫長度三者為參數,規劃兩組實驗跨距與試片尺寸,探討此含預裂縫之奈米複材三明治結構在三點彎曲末端刻痕(End Notched Flexure, ENF)試驗下的最大負載與臨界能量釋放率。文中,利用信號雜訊比 (S/N ratio)與因子反應分析找出三明治樑最大負載之最佳參數組合,並以變異數分析(ANVOA)產生最佳值預測;最後以虛擬裂縫擴展法(Virtual Crack Extension Method)進行臨界能量釋放率(Critical Energy Release Rate, Gc)之有限單元分析,並與實驗結果相互比較。結果顯示,在跨距80 mm實驗中,最佳參數組合為面材疊層角度[0°/±45°/90°]s、芯材碳管含量1 wt%、裂縫長度57 mm;在跨距50 mm實驗中,最佳參數組合為面材疊層角度[0°/±45°/90°]s、芯材碳管含量1 wt%、裂縫長度45mm。


    Sandwich structure is one of the most common composite structures. It combines a high specific strength, high specific stiffness facesheet glued with light-weighted core material, so it is easy to have interfacial crack which induces debonding and influence structural strength to produce structural collapse.
    Sandwich structure in this study fabricated by two composites to form a nano-composite sandwich structure; graphite fiber reinforced polymer(GFRP) laminate is used as facesheet and MWNTs/epoxy corematerial is glued to it by epoxy. With three parameters, facesheet stacking sequence, weight percent of MWNTs in core and length of pre-crack, Taguchi’s method is used in this article to discuss the maximum load and critical energy release rate of two different test spans and specimen size in three point bending end notched flexure (ENF) test. The optimal parameters were determined by Signal to Noise ratio (S/N ratio) and influences of paramenters, then Analysis of Variance ANOVA is used to find the optimal maximum load. Virtual crack extension method is used to calculate the critical energy release rate in finite element analysis and results were compared to experimental results. The test results showed that when test span is 80 mm, the optimal parameters are facesheet stacking sequence [0°/±45°/90°]s, 1 wt% MWNTs/epoxy corematerial and 57 mm pre-crack length; for test span is 50 mm, the optimal parameters are facesheet stacking sequence [0°/±45°/90°]s, 1 wt% MWNTs/epoxy corematerial and 45 mm pre-crack length.

    目 錄 頁次 中文摘要…………………………………………………………….... i 英文摘要…………………………………………………………….... ii 致謝…………………………………………………………….... iii 目錄 ………………………………………………………………….. iv 圖表目錄………………………………………………………….. vii 第一章 緒論……………………………………………………….…. 1 1.1研究動機…………………………………………………...... 1 1.2文獻回顧………………………………………………….…. 1 1.3研究目標………………………………………………….…. 7 第二章 有限單元分析與田口法…………………………..… 8 2.1有限單元分析…………………………………………….…. 8 2.2含裂縫三明治結構三點彎曲ENF有限單元分析…………. 11 2.3 ENF試驗臨界能量釋放率計算………………………….…. 12 2.4 實驗數據統計分析…………………………………………. 13 2.5 田口法………………………………………………………. 14 2.5.1信號雜訊比 (Signal to Noise Ratio, S/N ratio). ….. .. 15 2.5.2變異數分析(Analysis of Variance, ANOVA)…... ... ... 16 2.5.3 F檢定(F test)…………………………………… 17 2.5.4最佳值預測……………………………………….. ... 18 第三章 實驗設備與程序………………………………………….…. 19 3.1 實驗設備………………………………………………….… 19 3.1.1製作高分子複材之實驗設備…………….……….…. 19 3.1.2 製作複材疊層板之實驗設備…...……….……….…. 19 3.1.3量測材料常數之實驗設備…………….………….…. 20 3.1.4 奈米複材三明治結構三點彎曲測試實驗備...….….. 20 3.1.5 光學顯微鏡……...…………………………………... 20 3.2 試片製作……………………………………………………. 20 3.2.1 複材疊層板試片製作…….………………….……… 20 3.2.2高分子奈米複合材料試片製作…..………….……… 21 3.2.3含裂縫奈米複材三明治結構試片製作.…………….. 23 3.3材料常數量測…….…………………………………….…… 23 3.3.1碳纖維疊層板材料常數量測………………………... 24 3.3.2高分子奈米複材材料之楊氏係數(E)與蒲松比(ν)….. 25 3.4 三點彎曲ENF實驗程序 …….…………………………… 26 第四章 結果與討論…………………………………….……………. 27 4.1 拉伸試驗結果………………………………………………. 27 4.1.1 碳纖維疊層板拉伸試驗結果……………………….. 27 4.1.2多壁奈米碳管/環氧樹脂複合材料拉伸試驗結果….. 28 4.2含裂縫三明治結構三點彎曲ENF實驗最大負載之田口法 分析………………………………………………………….. 28 4.2.1實驗跨距80 mm……………………………………… 29 4.2.1.1 信號雜訊比 (S/N ratio)……………….……. 29 4.2.1.2 因子反應分析………………………………. 29 4.2.1.3 變異數分析 (ANOVA)與F檢定…………... 31 4.2.1.4 最佳值預測…………………………………. 31 4.2.2 實驗跨距50 mm ……………………………………. 32 4.2.2.1 信號雜訊比 (S/N ratio)…………………….. 32 4.2.2.2 因子反應分析………………………………. 32 4.2.2.3變異數分析 (ANOVA)與F檢定……………. 33 4.2.2.4 最佳值預測…………………………………. 34 4.2.3 實驗跨距80 mm與實驗跨距50 mm 之比較……… 34 4.3 含裂縫三明治結構三點彎曲ENF實驗臨界能量釋放率… 35 4.3.1 實驗跨距80 mm…………………………………….. 35 4.3.2 實驗跨距50 mm…………………………………….. 35 4.4 光學顯微鏡觀察……………………………………………. 36 4.5 ENF實驗探討………………..……………………………. 36 4.6有限元素分析結果討論……………………………………. 36 第五章 結論……………………………………………….……. 40 參考文獻………………………………………………………….…... 41 圖表整理………………………………………………………….…... 45 圖 表 目 錄 頁次 表4.1 碳纖維疊層板拉伸試驗結果………………………... 45 表4.2 多壁碳管/環氧樹脂拉伸試驗結果………………… 45 表4.3 控制因子與水準(實驗跨距80 mm)..................................... 46 表4.4 L9 直交表............................................................................ 46 表4.5 實驗跨距80 mm實驗設計.................................................... 47 表4.6 ENF實驗結果(實驗跨距80 mm) ..................................... 48 表4.7 ENF實驗之信號雜訊比(實驗跨距80 mm) ....................... 49 表4.8 控制因子A之水準-反應值(實驗跨距80 mm) ................... 49 表4.9 控制因子B之水準-反應值(實驗跨距80 mm) ................... 49 表4.10 控制因子B之水準-反應值(實驗跨距80 mm) ................... 50 表4.11 各控制因子之影響效應(實驗跨距80 mm) ........................ 50 表4.12 變異數分析結果(實驗跨距80 mm) .................................... 50 表4.13 控制因子與水準(實驗跨距50 mm) .................................... 51 表4.14 實驗跨距50 mm實驗設計.................................................... 51 表4.15 ENF實驗結果(實驗跨距50 mm) ........................................ 52 表4.16 ENF實驗之信號雜訊比(實驗跨距50 mm) ........................ 53 表4.17 控制因子A之水準-反應值(實驗跨距50 mm) ................... 53 表4.18 控制因子B之水準-反應值(實驗跨距50 mm) ................... 53 表4.19 控制因子C之水準-反應值(實驗跨距50 mm) ................... 54 表4.20 各控制因子之影響效應(實驗跨距50 mm) ........................ 54 表4.21 變異數分析結果(實驗跨距50 mm) ................................... 54 表4.22 ENF實驗臨界能量釋放率(實驗跨距80 mm) .................... 55 表4.23 ENF實驗臨界能量釋放率(實驗跨距50 mm) .................... 56 表4.24 ENF實驗與有限單元臨界能量釋放率比較(實驗跨距80 mm) ....................................................................................... 57 表4.25 ENF實驗與有限單元臨界能量釋放率比較(實驗跨距50 mm) ....................................................................................... 58 表4.26 面材疊層角度[0°/±90°/90°]s,芯材碳管含量1 wt%之三明治結構進行ENF實驗之結果......................................... 59 表4.27 不同厚度黏著層有限單元臨界能量釋放率(實驗跨距50 mm) ........... ........... ........... ........... ........... ........... ........... ... 59 表4.28 面材疊層角度[0°/±90°/90°]s,芯材碳管含量1 wt%之三明治結構2-D臨界能量釋放率分析結果(實驗跨距50 mm) ......... . ......... . ......... . ......... . ......... . ......... . ......... . ... 60 表4.29 面材疊層角度[0°/±90°/90°]s,芯材碳管含量1 wt%之三明治結構2-D與3-D臨界能量釋放率分析結果比較(實驗跨距50 mm) ......... . ......... . ......... . ......... . .................... . ... 60 圖2.1 有限單元分析流程……………………………………........ 61 圖2.2 Solid 46單元示意圖…………………………………….. 61 圖2.3 Solid 45 單元示意圖……………………………………… 62 圖2.4 裂縫尖端伸長Δa………………………………………….. 62 圖2.5 裂縫受力模式…………………………………………........ 63 圖2.6 複材疊層結構與三明治結構ENF實驗比較………........ 63 圖2.7 ENF結構分層定義……………………………………........ 64 圖2.8 分析流程…………………………………………………… 64 圖3.1 油壓式熱壓機……………………………………………… 65 圖3.2 真空幫浦…………………………………………………. 65 圖3.3 真空烘箱………………………………………………........ 66 圖3.4 熱風循環烤箱…………………………………………........ 66 圖3.5 磁力攪拌器……………………………………………........ 67 圖3.6 超音波振盪器…………………………………………........ 67 圖3.7 鑽石切割機....………………………….…………........ 68 圖3.8 拉伸試驗機..…………………………….……………........ 68 圖3.9 訊號接收系統..………………………….…………........ 69 圖3.10 INSTRON 3365萬用材料試驗機……………………..... 69 圖3.11 光學顯微鏡………………………………………………… 70 圖3.12 製作纖維複材疊層板之輔助材料堆疊示意圖…………… 70 圖3.13 製作試片之溫度與壓力控制圖………………………........ 71 圖3.14 環氧樹脂複合材料試片製作流程………………………… 71 圖3.15 製作多壁碳管/環氧樹脂複合材料之上下模、脫模布及模具擺設示意圖……………………………………………… 72 圖3.16 不鏽鋼模具……………………………………… 72 圖3.17 拋光研磨機……………………………………………….... 73 圖3.18 ENF試片示意圖…………………………………………. 73 圖3.19 製作完成之ENF試片…………………………………… 74 圖3.20 複材疊層板拉伸實驗試片……….…………………........ 74 圖3.21 高分子複材拉伸實驗試片…………………….............. 75 圖3.22 ENF試驗示意圖…………………………………………. 75 圖3.22 ENF實驗…………………………………………………… 76 圖4.1 碳纖維複合材料疊層板軸向應力-軸向應變曲線圖….... 76 圖4.2 碳纖維複合材料疊層板橫向應變-軸向應變曲線圖..….. 77 圖4.3 碳纖維複合材料疊層板橫向應力-軸向應變曲線圖..….. 77 圖4.4 碳纖維複合材料疊層板平面剪應力-平面剪應變曲線圖 78 圖4.5 高分子複材拉伸實驗後試片斷裂圖……………………… 78 圖4.6 多壁奈米碳管/環氧樹脂不同碳管含量與楊氏係數關係圖…………………………………………………………… 79 圖4.7 多壁碳管/環氧樹脂不同碳管含量與抗拉強度關係圖… 79 圖4.8 面材疊層角度[0°/±0°/90°]s,芯材0 wt% CNT/epoxy 含裂縫三明治結構之位移-負載曲線…………………… 80 圖4.9 面材疊層角度[0°/±45°/90°]s,芯材0 wt% CNT/epoxy 含裂縫三明治結構之位移-負載曲線…………………… 80 圖4.10 面材疊層角度[0°/±90°/90°]s,芯材0 wt% CNT/epoxy 含裂縫三明治結構之位移-負載曲線…………………… 81 圖4.11 面材疊層角度[0°/±0°/90°]s,芯材1 wt% CNT/epoxy 含裂縫三明治結構之位移-負載曲線…………………….. 81 圖4.12 面材疊層角度[0°/±45°/90°]s,芯材1 wt% CNT/epoxy 含裂縫三明治結構之位移-負載曲線……………………... 82 圖4.13 面材疊層角度[0°/±90°/90°]s,芯材1 wt% CNT/epoxy 含裂縫三明治結構之位移-負載曲線……………………... 82 圖4.14 面材疊層角度[0°/±0°/90°]s,芯材2 wt% CNT/epoxy 含裂縫三明治結構之位移-負載曲線…………………… 83 圖4.15 面材疊層角度[0°/±45°/90°]s,芯材2 wt% CNT/epoxy 含裂縫三明治結構之位移-負載曲線…………………… 83 圖4.16 面材疊層角度[0°/±90°/90°]s,芯材2 wt% CNT/epoxy 含裂縫三明治結構之位移-負載曲線…………………… 84 圖4.17 光學顯微鏡量測裂縫厚度(裂縫起始處) ………………… 84 圖4.18 光學顯微鏡量測上面材與芯材間距(距離裂縫起始處20 mm)……………………………………………………… 85 圖4.19 光學顯微鏡量測上面材與芯材間距(試片末端)……………………………………………………… 85 圖4.20 芯材與面材沾附黏著層情況……………………………… 86 圖4.21 面材疊層角度[0°/±90°/90°]s,芯材碳管含量1 wt%之三明治結構,,裂縫長度與Gc之關係圖…………………… 86 圖4.22 有限單元模型建構座標示意圖…………………………… 87 圖4.23 四層模型建構……………………………………………… 87 圖4.24 原始裂縫尖端網格化……………………………………… 88 圖4.25 裂縫尖端網格化示意圖…………………………………… 88 圖4.26 三明治結構經規則網格化………………………………… 89 圖4.27 solid46疊層形狀展開……………………………………… 89 圖4.28 面材疊層角度[0°/±0°/90°]s,芯材0 wt% CNT/epoxy,裂縫長度55 mm三明治結構之之z方向位移(mm) ……… 90 圖4.29 裂縫尖端變形……………………………………………… 90 圖4.30 面材疊層角度[0°/±0°/90°]s,芯材0 wt% CNT/epoxy,裂縫長度55 mm三明治結構之之最大主應力(MPa)…………………………..…………………………… 91 圖4.31 2-D FEM model 1………………………………………….. 91 圖4.32 2-D FEM model 2………………………………………….. 92

    參考文獻
    1. M. K. Yeh and S. S. Ho, “Buckling of Delaminated Cylindrical Composite Panel Under Axial Compression,” 2nd International Conference on Composites Engineering, ICCE/2, August 21-24, New Orleans, LA, pp. 845-846, 1995.
    2. S. S. Ho and M. K. Yeh, “Effects of Geometrical Imperfections on the Buckling of Cured Cylindrical Composite Panels,” The 19nd on Theoretical and Applied Mechanics, Taoyuan, Taiwan, ROC, December 8-9, pp. 153-160, 1995.
    3. H. Y. Ling, K. T. Lau and C. K. Lam, “Effects of Embedded Optical Fibre on Mode II Fracture Behaviours of Woven Composite Laminates,” Composites: Part B, Vol. 36, pp. 534-543, 2005.
    4. A. Agrawal and A. M. Karlsson, “On the Reference Length and Mode Mixity for a Bimaterial Interface,” Journal of Engineering Materials and Technology, Vol. 129, pp. 580-589, 2007.
    5. J. Wang and P. Qiao, “Analysis of Beam-Type Fracture Secimens with Crack-Tip Deformation,” International Journal of Fracture, Vol. 132, pp. 232-248, 2005.
    6. L. Kucherov and M. Ryvkin, “Interface Crack In Periodically Layered Bimaterial Composite,” International Journal of Fracture, Vol. 117, pp. 175-194, 2002.
    7. J. Hohe and W. Becker, “Assessment of the Delamination Hazard of the Core Face Sheet Bond in Structural Sandwich Panels,” International Journal of Fracture, Vol. 109, pp. 413-432, 2001.
    8. S. J. Huang, “Mathematical Modeling of the Stress-strain State of Adhesive Layers in Sandwich Structures,” Mechanics of Composite Material, Vol. 38, pp. 103-120, 2002.
    9. Y.B. Cho and R.C. Averill, “First-order Zig-zag Sublamination Plate Theory and Finite Element Model for Laminated Composite and Sandwich Panels,” Composite Structures, Vol. 50, pp. 1-15, 2000.
    10. J. M. Bai and C. T. Sun, “The Effect of Viscoelastic Adhesive Layers on Structural Damping of Sandwich Beams,” Mechanics Based Design of Structures and Machines: An International Journal, Vol. 23, pp. 1-16, 1995.
    11. 王文毅,複合三明治結構膠黏層的黏彈性質分析,國立中正大學機械工程研究所碩士論文,2002。
    12. 蕭銘志,三明治板的挫屈分析-五層理論法,國立中正大學機械工程研究所碩士論文,2005。
    13. V. Vadakke and L.A. Carlsson, “Experimental Investigation of Compression Failure of Sandwich Specimens with Facecore Debond,” Composites: Part B, Vol. 35, pp. 583-590, 2004.
    14. V. P. Veedu and L.A. Carlsson, “Finite-Element Buckling Analysis of Sandwich Columns Containinga Face/Core Debond,” Composite Structures 69 , Vol. 69, pp. 143-148, 2005.
    15. H. Y. Kim and W. Hwang, “Effect of Debonding on Frequencies and Frequency Response Functions of Honeycomb Sandwich,” Composite Structures, Vol. 55, pp. 51-62, 2002.
    16. H. Mahfuz, S. Islam, M Saha, L. Carlsson and S. Jeelani, “Buckling of Sandwich Composites Effects of Core–Skin Debonding and Core Density,” Applied Composite Materials, Vol. 12, pp. 73-91, 2005.
    17. R.C. Østergaard, “Buckling Driven Debonding in Sandwich Columns,” International Journal of Solids and Structures , Vol. 45, pp. 1264-1282, 2008.
    18. A. L. Mouritz and R. S. Thomson, “Compression, Flexure and Shear Properties of A Sandwich Composite Containing Defects,” Composite Structures, Vol. 44, pp. 263-278, 1999.
    19. B. O. Baba and S. Thoppul, “Experimental Evaluation of The Vibration Behavior of Flat and Curved Sandwich Composite Beams with Face/Core Debond,” Composite Structures, Vol. 91, pp. 110-119, 2009.
    20. S. Goswami and W. Becker, “Analysis of Debonding Fracture In A Sandwich Plate with Hexagonal Core,” Composite Structures, Vol. 49, pp. 385-392, 2000.
    21. G. C. Papanicolaou and D. Bakos, “Interlaminar Fracture Behavior of Sandwich Structures,” Composites: Part A, Vol. 27, pp. 165-173, 1996.
    22. A. Ural, Alan T. Zehnder and Anthony R. Ingraffea, “Fracture Mechanics Approach to Facesheet Delamination in Honeycomb: Measurement of Energy Release Rate of The Adhesive Bond”, Engineering Fracture Mechanics, Vol. 70, pp. 93-103, 2003.
    23. S. D. Pan, L.Z. Wu, Y. G.. Sun and Z. G. Zhou, “Fracture Test for Double Cantilever Beam of Honeycomb Sandwich Panels,” Materail Letters, Vol. 62, pp. 523-526, 2008.
    24. D. L. Grau, X. S. Qiu and B. V. Sankar, “Relation Between Interfacial Fracture Toughness and Mode-mixity in Honeycomb Core Sandwich Composites,” Journal of Sandwich Structures and Materials, Vol. 8, pp. 287-203, 2006.
    25. P. Compston, P.-Y.B. Jar, P.J. Burchill and K. Takahashi, “The Effect of Matrix Toughness and Loading Rate on The Mode-II Interlaminar Fracture Toughness of Glass-fibre/Vinyl-ester Composites,” Composites Science and Technology, Vol. 61, pp. 321-333, 2001.
    26. A. Quispitupa, C. Berggreen and L.A. Carlsson, “On the Analysis of a Mixed Mode Bending Sandwich Specimen or Debond Fracture Characterization,” Engineering Fracture Mechanics, Vol. 76, pp. 594–613, 2009.
    27. M. Arai, Y. Noro, K.I Sugimoto and M. Endo, “Mode I and Mode II Interlaminar Fracture Toughness of CFRP Laminates Toughened by Carbon Nanofiber Interlayer,” Composites Science and Technology, Vol. 68, pp. 516-525, 2008.
    28. F. Avilés and L.A. Carlsson, “Analysis of The Sandwich DCB Specimen for Debond Characterization,” Engineering Fracture Mechanics, Vol. 75, pp. 153-168, 2008.
    29. P. Majumdar, D. Srinivasagupta, H. Mahfuz, B. Joseph, M. M. Thomas and S. Christensen, “Effect of Processing Conditions and Material Properties On The Debond,” Composites: Part A , Vol. 34, pp. 1079-1104, 2003.
    30. S. Goswami and W. Becker, “The Effect of Facesheet Core Delamination in Sandwich Structures under Transverse Loading,” Composite Structures, Vol. 54, pp. 525-521, 2001.
    31. D. R. Veazie, K. R. Robinson and K. Shivakumar, “Effects of The Marine Environment on The Interfacial Fracture Toughness,” Composites: Part B, Vol. 35, pp. 461-466, 2004.
    32. H. L. Fan, F. H. Meng, and W. Yang, “Sandwich Panels with Kagome Lattice Cores Reinforced by Carbon Fibers,” Composite Structures, Vol. 81, pp. 533-539, 2007.
    33. M. Styles, P. Compston and S. Kalyanasundaram, “The Effect of Core Thickness on The Fexural Behaviour of Aluminium Foam Sandwich Structures,” Composite Structures, Vol. 80, pp. 532-538, 2007.
    34. C. Borsellino, L. Calabrese and A. Valenza, “Experimental and Numerical Evaluation of Sandwich Composite Structures,” Composites Science and Technology, Vol. 64, pp. 1709-1715, 2004.
    35. J. Kim and S R. Swanson, “Design of Sandwich Structures for Concentrate Loading,” Composite Structures, Vol. 52, pp. 365-373, 2001.
    36. B. Fiedler, F. H. Gojny, M. H. C. Wichmann, M. C.M. Nolte, and K. Schulte, “Fundamental Aspects of Nano-Rreinforced Composites,” Composites Science and Technology, Vol. 66, pp. 3115-3125, 2006.
    37. 劉家豪,多壁奈米碳管/酚醛樹脂複合材料之機械性質研究,國立清華大學動力機械工程研究所碩士論文,2004。
    38. J. Hohe and W. Becker, “Assessment of The Delamination Hazard of The Core Face Sheet Bond in Structural Sandwich Panels,” International Journal of Fracture, Vol. 109, pp. 413-432, 2001.
    39. Y. Zhou, F. Pervin, L. Lewis and S. Jeelani, “Fabrication and Characterization of Carbonepoxy Composites Mixed with Multi-Walled Carbon Nanotubes,” Materials Science and Engineering A, Vol. 475, pp. 157-165, 2008.
    40. ANSYS Release 10.0, ANSYS, Inc., PA, 2006.
    41. 藤井太一、座古勝,劉松柏譯,複合材料的破壞與力學,五南圖書出版股份有限公司,台灣台北,2006。
    42. David Broek原著,陳兆勛譯,破裂力學之實際應用,國立編譯館,台灣台北,1999。
    43. T. Yokozeki, T. Ogasawara and T. Aoki, “Correction method for evaluation of interfacial fracture toughnessof DCB, ENF and MMB specimens with residual thermal stresses” Composites Science and Technology , Vol. 68, pp. 760–767,2008
    44. J. W. Dally and W. F. Riley, “Experimental Stress Analysis,”New York, McGraw-Hill Inc., 1991.
    45. 鄭燕琴,田口品質工程技術理論與實務,中華民國品質管制學會,台灣台北,1993。
    46. ASTM C393-00, “Standard Test Method for Flexural Properties of Sandwich Constructions,” Annual Book of ASTM Standards, 2000.
    47. R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 2007.
    48. K. S. Kim and C. S. Hong, “Delamination Growth in Angle-Ply Laminated Composites,” Journal of Composite Materials, Vol. 20, pp. 423-438, 1986.
    49. M. K. Yeh and C. M. Tan, “Buckling of Elliptically Delaminated Composite plates,” Journal of Composite Materials, Vol. 28, No. 1, pp. 36-52, 1994.
    50. ASTM D3039-00, “Standard Test Method for Tensile Properties of Fiber-Resin Composites,” Annual Book of ASTM Standards, 2000.
    51. ASTM D3518-01, “Standard Practice for Inplane Shear Stress-strain Response of Unidirectional Reinforced Plastics,” Annual Book of ASTM Standards, 2001.
    52. L. A. Carlsson and R. B. Pipes, Experimental Characterization of Advanced Composite Materials, New Jersey, Prentic-Hall, 1987.
    53. ASTM D638-03, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1982.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE