研究生: |
張簡玉琳 Chang Chien, Yu-ling |
---|---|
論文名稱: |
探討三維奈米微結構於鋰電池正極之電荷及離子傳導現象及應用 Simultaneous Ionic and Electronic Transport Phenomena within Three Dimensional Nanostructure for Lithium Battery Cathode |
指導教授: |
何榮銘
Ho, Rong-ming |
口試委員: |
蔡敬誠
衛子健 蔣酉旺 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 嵌段共聚物 、導電高分子 、三維奈米網狀結構 、電極 |
外文關鍵詞: | block copolymer, conducting polymers, three-dimensional network nanostructure, electrode |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究擬設計一具有雙連續相的特殊三維網狀奈米微結構之高分子合金材料:聚3-己烷基噻吩/聚乙二醇(Poly(3-hexylthiophene)/Polyethylene oxide, P3HT/PEO)複材,目的為利用此一複材探討三維網狀結構與奈米尺度對於電子與離子傳導性之影響,以期建立最佳之結構型態運用於鋰電池之電極材料開發。其中,聚(3-己烷基噻吩) 作為電子傳導材料而聚乙二醇則作為離子傳遞材料,建構導電及導離子雙效功能之奈米高分子材料。首先,利用自組裝製備具雙螺旋二十四面體(gyroid)奈米微結構的聚苯乙烯共聚左旋乳酸(Polystyrene-b-Poly(L-lactide), PS-PLLA)雙嵌段共聚物,經水解獲得奈米多孔聚苯乙烯,依此為模板進行二氧化矽(SiO2) 之溶膠凝膠反應,建構高有序奈米多孔之二氧化矽薄膜作為硬模板(hard template),接著利用溶劑結合加熱融化方式將聚(3-己烷基噻吩)反填入模板中,製備聚(3-己烷基噻吩) 與二氧化矽之奈米混成材料,經氫氟酸移除二氧化矽 模板後,獲得聚(3-己烷基噻吩)奈米網狀微結構材料作為導電的微觀相,再利用類似方法填入聚乙二醇及協助離子傳導之雙三氟甲烷磺酰亞胺鋰( Bis(trifluoromethanesulphonyl)imide, LiTFSI) 作為導離子微觀相,製備雙連續相之聚(3-己烷基噻吩)/ 聚乙二醇-雙三氟甲烷磺酰亞胺鋰(P3HT/PEO-LiTFSI)奈米高分子合金薄膜。利用交流阻抗頻譜法(Electrochemistry impedance spectroscopy, EIS)以聚(3-己烷基噻吩)/聚乙二醇/雙三氟甲烷磺酰亞胺鋰(P3HT/PEO/LiTFSI)混合系統作為對照組,量測電子與離子傳導行為,初步結果顯示聚(3-己烷基噻吩)/ 聚乙二醇/雙三氟甲烷磺酰亞胺鋰混合物可能受濕氣影響而呈現離子導電度過高的現象,後續擬改正相關設計避免水氣干擾,預期此聚(3-己烷基噻吩)/聚乙二醇-雙三氟甲烷磺酰亞胺鋰奈米高分子合金薄膜,將可同時結合導電及導離子雙效功能之高分子黏著材料及特殊三維網狀結構等優點,於雙連續相及奈米尺寸下進行雙效傳導,獲得最佳之電子離子傳遞系統,製備先進之鋰電池電極材料。
In this study, we aim to fabricate three-dimensional poly(3-hexylthiophene)/polyethylene oxide (P3HT/PEO) gyroid nanoalloys in the bulk-film state with co-continuous texture for the examination of ionic and electronic transport behaviors in nanospace, which can be further exploited as three-dimensional nanostructured materials for the use in electrode. P3HT can serve as an electron-conducting microdomain while PEO is an ion-conducting microdomain. Nanoporous SiO2 gyroid bulk film is fabricated by templated sol-gel reaction using hydrolyzed polystyrene-b-poly(L-lactide) as a template, and then used as a hard template for backfilling of P3HT to create P3HT/SiO2 nanohybrids. Subsequently, nanoporous P3HT gyroid can be fabricated after removal of the SiO2 networks using HF solution. P3HT/PEO-LiTFSi gyroid nanoalloys in the bulk-film state are expected to be obtained after pore-filling of the mixture of poly(ethylene oxide) (PEO) and lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) into the nanochannels as ion-conducting microdomain whereas the P3HT microdomain will be the electron-conducting microdomain. As a result, three-dimensional polymer binder materials coupling electron-and ion-conducting microdomain with well-defined co-continuous gyroid nanostructure can be fabricated in the near future, and used to examine the effect of continuous texture with nanoscale dimension on the electronic and ionic transport behaviors. To truly examine the texture effect on the conducting behaviors, the impedance measurement of the P3HT/PEO/LiTFSI blends was also carried out to compare with the P3HT/PEO-LiTFSi gyroid nanoalloys, which shows the transport behavior of a mixed conductor with relative large ion conductivity compared with electron conductivity.
1. Tarascon, J. M.; Armand, M. Nature. 2001,414, 359-367.
2. Kim, M. G.; Cho. J. Advanced Functional Materials. 2009, 19,1497–1514.
3. Manthiram, A.; Murugan, A. V.; Sarkar, A.; Muraliganth, T. Energy Environ. Sci. 2008, 1, 621-638.
4. Etacheri, V.; Marom, R.; Elazari, R.;Salitra, G.; Aurbach, D. Energy Environ. Sci.2011, 4, 3243
5. Liu, R.; Duaya, Jonathon.; Lee, S. B. Chem. Commun., 2011,47, 1384-1404.
6. Jiao, F.; Bruce, P. G. Adv. Mater. 2007, 19, 657.
7. Aricq, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijc, V.
Nat. Mater. 2005, 4, 366.
8. Balaya, P.; Bhattacharyya, A. J.; Jamnik, J.; Zhukovskii, Y. F.; Kotomin, E. A.; Maier, J. Journal of Power Sources. 2006, 159, 171.
9. Meethong, N.; Huang, H. Y. S.; Carter, W. C.; Chiang, Y. M.;
Electrochem. Solid-State Lett. 2007, 10, A134.
10.Wang, Y.; Cao, Guozhong Adv. Mater. 2008, 20, 2251–2269.
11. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew.Chem. Int. Ed. 2008, 47, 2930 – 2946.
12. Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourg, M. E.; Lubers, A. M. Chem. Soc. Rev., 2009, 38, 226–252.
13. Long, J. W.; Dunn, B.; Rolison, D. R.;White, H. S. Chem. Rev. 2004,104, 4463–4492.
14. Choi, J. H.; Ye, Y.; Elabd, Y. A.; Winey, K. I. Macromolecules. 2013, 46, 5290−5300.
15. Ichikawa, T.; Yoshio, M.; Atsushi, H.; Kagimoto, J.; Ohno, H.; Kato, T. J. Am. Chem. Soc. 2011, 133, 2163–2169.
16. Itaru Osaka ; Richard D. McCullough. Acc. Chem. Res., 2008, 41, pp 1202–1214
17. McCullough, R. D. Adv. Mater. 1998, 10, 93-116
18. Borodin, O.; Smith, G. D. Macromolecules. 2006, 39, 1620-1629.
19. Stoeva, Z.; Martin-Litas, I.; Staunton, E.; Andreev, Y. G.; Bruce, P. G. J. Am. Chem. Soc. 2003, 125, 4619-4626.
20.Hallinan Jr., D. T.; Balsara, N. P. Annual Review of Materials Research. 2013, 43.503-525.
21. Cao, G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, London, 2004.
22. Das, B.; Subramanium, S.; Melloch, M. R. Semicond. Sci. Technol 1993, 8, 1347.
23. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
24. Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
25. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
26. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
27. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
28. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
29. (a) Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519. (b) Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
30. Ho, R.-M.; Chiang, Y.-W.; Chen, C.-K.; Wang, H.-W.; Hasegawa, H.; Akasaka, S.; Thomas, E. L.; Burger, C.; Hsiao, B. S. J. Am. Chem. Soc. 2009, 131, 18533.
31. Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M. Adv. Mater. 2006, 18, 2355.
32. (a) Martin-Moreno, L.; Garcia-Vidal, F. J.; Somoza, A. M. Phys. Rev. Lett. 1999, 83, 73. (b) Milhaupt, J. M.; Lodge, T. P. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 843. (c) Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 6352.
33. (a) Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Macromolecules 1997, 30, 3788. (b) Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
34. Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J. Macromol. Rapid Commun. 2006, 27, 1424.
35. (a) Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86. (b) Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922. (c) Wang, C. Y.; Lodge, T. P. Macromolecules 2002, 35, 6997. (d) Wang, C. Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
36. (a) Sakurai, S.; Umeda, H.; Furukawa, C.; Irie, H.; Nomura, S.; Lee, H. H.; Kim, J. K. J. Chem. Phys. 1998, 108, 4333. (b) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Mai, S.-M.; Booth, C. Phys. Chem. Chem. Phys. 1999, 1, 2097.
37. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986, 19, 215.
38. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
39. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
40. Luzzati, V.; Spegt, P. A. Nature 1967, 215, 701.
41. Schoen, A. H. NASA TN D-5541, 1970.
42. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
43. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
44. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
45. Tseng, W.-H.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H. J. Am. Chem. Soc. 2009, 131, 1356.
46. Chen, C.-K.; Hsueh, H.-Y.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H. Macromolecules 2010, 43, 8637.
47. Merhari, L. Hybrid Nanocomposites for Nanotechnology: Electronic, Optical, Magnetic and Biomedical Applications; Springer, New York, 2009.
48. Chan, Y. N. C.; Schrock, R. R.; Cohen, R. E. J. Am. Chem. Soc. 1992, 114, 7295.
49. Forster, S.; Antonietti, M., Adv. Mater. 1998, 10, 195.
50. Sakai, T.; Alexandridis, P., J. Phys. Chem. B 2005, 109, 7766.
51. Spatz, J. P.;Sheiko S.; Moller, M., Macromolecule 1996, 29, 3220.
52. Cuenya, B. R.; Baeck, S. H.; Jaramillo, T. F.; McFarland, E. W., J. Am. Chem. Soc. 2003, 125, 12928.
53. Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T., Macromolecules 2006, 39, 7352.
54. Bockstaller, M, R.; Lapetnikov, Y.; Margel, S.; Thomas, E, L., J. Am. Chem. Soc. 2003, 125, 5276.
55. Furneaux, R. C.; Rigby, W.R.; Davidson, A. P. Nature 1989, 337, 147-149.
56. Fleisher, R. L.; Price, P. B.; Walker, R. M. Nuclear Tracks in Solids 1975, University of California Press, Berkeley, CA.
57. Chen, J.-T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M.; Russell, T. P. Adv. Func. Mater. 2006, 16, 1476–1480.
58. Lo, K.-H.; Tseng, W.-H.; Ho, R.-M. Macromolecule 2007, 40, 2621.
59. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.
60. Pierre, A. C. Introduction to Sol-gel Processing; Kluwer Academic: Boston, 1998.
61. Whitney, T. M.; Jiang, J. S.; Searson, P. C.; Chien, C. L. Science 1993, 261, 1316.
62. Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U.; Snaith, H. J. Nano Lett. 2009, 9, 2807-2812.
63. Graham, A. H.; Lindsay, R. W.; Read, H. J. J. electrochem. Soc. 1965, 112, 401.
64. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
65. Huigang Zhang, Xindi Yu and Paul V. Braun Nature Nanotechnology 6, 277–281 (2011)
66. Hsueh, H. Y.; Chen, H. Y.; She, M. S.; Chen, C. K.; Ho, R. M.;Gwo, S.; Hasegawa, H.; Thomas, E. L. Nano Lett. 2010, 10, 4994−5000.
67. Lascaud S.; Perrier, M.; Vallée, A.; Besner, S.; Prud’homme, J.; Armand, M. Macromolecules 1994, 27, 7469.
68. Osaka, I.; McCullough, R. D. Acc. Chem. Res., 2008, 41, 1202–1214.
69. Croce1, F.; Appetecchi1, G. B.; Persi1, L.; Scrosati, B. Nature 1998, 394, 456-458.
70. Scrosati, B. Chim. Ind. (Milan) 1997,79, 463–471.
71. Song, J.Y.; Wang, Y.Y.; Wan C.C.J. Power Sources,1999,77,183-197.
72. Sun, Y. S.; Chung T.M.; Li, Y.J.; Ho, R.M.; Ko , B.T.;Jeng, U.S. Lotz, B. Macromolecules, 2006, 39 , 5782–5788.
73. Huggins, R. A. Ionics 2002, 8, 300 – 313.
74. Javier, A. E.; Patel, S. N.; Hallinan. Jr., D. T.; Srinivasan, V; Balsara, N. P. Angew. Chem. Int. Ed. 2011, 50, 9848 –9851.