簡易檢索 / 詳目顯示

研究生: 張簡玉琳
Chang Chien, Yu-ling
論文名稱: 探討三維奈米微結構於鋰電池正極之電荷及離子傳導現象及應用
Simultaneous Ionic and Electronic Transport Phenomena within Three Dimensional Nanostructure for Lithium Battery Cathode
指導教授: 何榮銘
Ho, Rong-ming
口試委員: 蔡敬誠
衛子健
蔣酉旺
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 84
中文關鍵詞: 嵌段共聚物導電高分子三維奈米網狀結構電極
外文關鍵詞: block copolymer, conducting polymers, three-dimensional network nanostructure, electrode
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究擬設計一具有雙連續相的特殊三維網狀奈米微結構之高分子合金材料:聚3-己烷基噻吩/聚乙二醇(Poly(3-hexylthiophene)/Polyethylene oxide, P3HT/PEO)複材,目的為利用此一複材探討三維網狀結構與奈米尺度對於電子與離子傳導性之影響,以期建立最佳之結構型態運用於鋰電池之電極材料開發。其中,聚(3-己烷基噻吩) 作為電子傳導材料而聚乙二醇則作為離子傳遞材料,建構導電及導離子雙效功能之奈米高分子材料。首先,利用自組裝製備具雙螺旋二十四面體(gyroid)奈米微結構的聚苯乙烯共聚左旋乳酸(Polystyrene-b-Poly(L-lactide), PS-PLLA)雙嵌段共聚物,經水解獲得奈米多孔聚苯乙烯,依此為模板進行二氧化矽(SiO2) 之溶膠凝膠反應,建構高有序奈米多孔之二氧化矽薄膜作為硬模板(hard template),接著利用溶劑結合加熱融化方式將聚(3-己烷基噻吩)反填入模板中,製備聚(3-己烷基噻吩) 與二氧化矽之奈米混成材料,經氫氟酸移除二氧化矽 模板後,獲得聚(3-己烷基噻吩)奈米網狀微結構材料作為導電的微觀相,再利用類似方法填入聚乙二醇及協助離子傳導之雙三氟甲烷磺酰亞胺鋰( Bis(trifluoromethanesulphonyl)imide, LiTFSI) 作為導離子微觀相,製備雙連續相之聚(3-己烷基噻吩)/ 聚乙二醇-雙三氟甲烷磺酰亞胺鋰(P3HT/PEO-LiTFSI)奈米高分子合金薄膜。利用交流阻抗頻譜法(Electrochemistry impedance spectroscopy, EIS)以聚(3-己烷基噻吩)/聚乙二醇/雙三氟甲烷磺酰亞胺鋰(P3HT/PEO/LiTFSI)混合系統作為對照組,量測電子與離子傳導行為,初步結果顯示聚(3-己烷基噻吩)/ 聚乙二醇/雙三氟甲烷磺酰亞胺鋰混合物可能受濕氣影響而呈現離子導電度過高的現象,後續擬改正相關設計避免水氣干擾,預期此聚(3-己烷基噻吩)/聚乙二醇-雙三氟甲烷磺酰亞胺鋰奈米高分子合金薄膜,將可同時結合導電及導離子雙效功能之高分子黏著材料及特殊三維網狀結構等優點,於雙連續相及奈米尺寸下進行雙效傳導,獲得最佳之電子離子傳遞系統,製備先進之鋰電池電極材料。


    In this study, we aim to fabricate three-dimensional poly(3-hexylthiophene)/polyethylene oxide (P3HT/PEO) gyroid nanoalloys in the bulk-film state with co-continuous texture for the examination of ionic and electronic transport behaviors in nanospace, which can be further exploited as three-dimensional nanostructured materials for the use in electrode. P3HT can serve as an electron-conducting microdomain while PEO is an ion-conducting microdomain. Nanoporous SiO2 gyroid bulk film is fabricated by templated sol-gel reaction using hydrolyzed polystyrene-b-poly(L-lactide) as a template, and then used as a hard template for backfilling of P3HT to create P3HT/SiO2 nanohybrids. Subsequently, nanoporous P3HT gyroid can be fabricated after removal of the SiO2 networks using HF solution. P3HT/PEO-LiTFSi gyroid nanoalloys in the bulk-film state are expected to be obtained after pore-filling of the mixture of poly(ethylene oxide) (PEO) and lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) into the nanochannels as ion-conducting microdomain whereas the P3HT microdomain will be the electron-conducting microdomain. As a result, three-dimensional polymer binder materials coupling electron-and ion-conducting microdomain with well-defined co-continuous gyroid nanostructure can be fabricated in the near future, and used to examine the effect of continuous texture with nanoscale dimension on the electronic and ionic transport behaviors. To truly examine the texture effect on the conducting behaviors, the impedance measurement of the P3HT/PEO/LiTFSI blends was also carried out to compare with the P3HT/PEO-LiTFSi gyroid nanoalloys, which shows the transport behavior of a mixed conductor with relative large ion conductivity compared with electron conductivity.

    Contents Abstract I Contents III List of Table V Figure Caption VI Chapter 1 Introduction 1 1.1 Nanostructured materials for Lithium Ion Battery Cathode 1 1.1.1 Introduction to Li-ion Btteries 2 1.1.2 Nanomaterials for Lithium Battery Cathode 3 1.1.3 Three-Dimensional Design for Lithium Battery Cathode .5 1.2 Organic Materials for Ionic and Electronic Transport 6 1.2.1 Electron Cnducting Polymer- Poly(3-alkylthiophene)s 6 1.2.2 Ion Conducting Polymer- Polyethylene Oxide 8 1.3 Buttom-up Approaches for Forming Nanomaterials 10 1.3.1 Self-assembly 12 1.3.2 Self-assembly of Ciral Bock Cpolymers (BCPs*) 13 1.3.3 Helical Phases in BCPs* 15 1.4 Gyroid Phase from BCP* Self-assembly 21 1.4.1 Nanostructures of Gyroid Phase 21 1.4.2 Formation of Helix and Gyroid 26 1.5 Nanohybrid Materials 32 1.5.1 In-situ Hybridization 35 1.5.2 Ex-situ Hybridization 36 1.5.3 Templated Synthesis 37 1.6 Nanoreactors for Templated Synthesis 38 1.6.1 Capillary Forces for Pore-Filling Process 38 1.6.2 Templated Sol-gel Reaction 40 Chapter 2 Objectives 50 Chapter 3 Experimental 52 3.1 Materials 52 3.1.1 Synthesis of PS-PLLA BCPs* 52 3.1.2 Synthesis of P3HTs 55 3.2 Sample Preparation 57 3.2.1 Preparation of Nanoporous SiO2 Gyroid 57 3.2.2 Preparation of Nanoporous P3HT Gyroid 59 3.3 Electrochemical Testing 59 3.3.1 Sample Preparation 59 3.3.2 Conductivity Measurment from Impedance Spectroscopy.. 60 3.4 Instruments 60 Chapter 4 Results and Discussion 63 4.1 Nanoporous Inorganic Gyroid Bulk FilmTemplate from BCP*. 63 4.1.1 Self-assembly of PS-PLLA Bulk Film . 64 4.1.2 Nanoporous PS Gyroid Bulk Film 65 4.1.3 Nanoporous SiO2 Gyroid Bulk Film 67 4.2 P3HT/PEO+LiTFSI Gyroid Nanoalloys in Bulk Film State 70 4.2.1 P3HT/SiO2 Gyroid Nanohybrids 73 4.2.2 Nanoporous P3HT Gyroid Bulk Film 76 4.2.3 P3HT/PEO+LiTFSI Gyroid Nanoalloys 78 4.3 Simultaneous Ionic and Electronic Transport Phenomenona within P3HT/PEO+LiTFSI Nanoalloys in Bulk Film State 81 4.3.1 Conductivity Measurements 81 Chapter 5 Conclusions 86 Chapter 6 Future Work 88 Chapter 7 Reference 89   List of Tables Table 3-1. Characterization of PS-PLLA BCPs*. Table 3-2. Characterization of P3HT..   List of Figures Fig. 1.1.1-1 A schematic presentation of the most commonly used Li-ion battery based on graphite anodes and LiCoO2 cathodes. 3 Figure1.2.1-1 Chemical structures of (1) unsubstituted 2,5-coupled PT. (2) regioirregular P3AT. (3) regioregular HT P3AT. (4) regiosymmetric PT. 7 Figure 1.2.2-1 Polymer electrolyte - poly(ethylene oxide ) with LiTFSI. 9 Figure 1.3.1.-1 Biological architectures are formed by interplay among secondary forces to form different levels of organization, i.e., different length-scales of morphologies. 12 Figure 1.3.2-1. Schematic phase diagram showing the various classical BCP morphologies adopted by non-crystalline linear diblock copolymer. The red component represents the minority phase and the matrix, majority phase surrounds it. 14 Figure 1.3.3-1. TEM mass-thickness-contrast micrographs and corresponding 1D SAXS profiles of self-assembled morphologies in the bulk samples of PS-PLLA BCPs* with different volume fractions of PLLA: a) fPLLAv=0.14; b) fPLLAv =0.29 and c) fPLLAv =0.49. 17 Figure 1.3.3-2. (a) TEM mass-thickness-contrast micrograph of self-assembled morphology in the bulk samples of PS-PLLA with fPLLAv=0.34 after quenching from the microphase-separated melt (175oC) viewing with electron beam slightly tilting from the helical central axis and (b) corresponding 1D SAXS pattern. Inset shows 2D SAXS pattern. (c) Schematic illustration of H* phase.. 18 Figure 1.3.3-3 TEM mass-thickness-contrast micrographs of self-assembled morphologies in the bulk samples of PS-PLLA with fPLLAv = 0.65 after quenching from the microphase-separated melt (175oC). (A) Projection along the cylinder axis; (B) projection normal to the cylinder axis. (C) Corresponding 1D SAXS profile of PS-PLLA with fPLLAv = 0.65 after quenching from the microphase-separated melt (175oC).. 20 Figure 1.3.3-4 TEM mass-thickness-contrast micrograph of hydrolyzed core-shell cylinder nanostructures of PS-PLLA BCP* with fPLLAv = 0.65.. 21 Figure 1.4.1-1 TEM micrographs obtained from a starblock copolymer material comprised of PS-PI arms with 30 wt % PS. The majority PI appears black because it was stained with OsO4. Tilting the specimen in the TEM converted the square projection in (a) into the wagon-wheel arrangement in (b).. 23 Figure 1.4.1-2 TEM micrograph of the tetrapod-network structure in PS-PI BCP toluene-casting film, the inset shows the enlarged area... 24 Figure 1.4.1-3 A constant-thickness structure, based on the G surface, proposed as a possible model for the gyroid morphology at a minority component volume fraction of 0.33. The regime illustrated in this figure is the matrix; the two independent networks are depicted as the white/void regions. 26 Figure 1.4.2-1 Bright-field TEM micrographs of PS/SiO2 helical nanocomposites viewed parallel to the helical central axes for (a) 70nm-thickness; (b) 150nm-thickness samples. Insets represent the corresponding simulated projection images. 3D TEM visualization with a dark matrix: (c) cross-sectional view after binarization; (d) and (e) images viewed parallel to the helical central axes and slightly tilted from the helical central axes after binarization and segmentation, respectively (the domain within the box with the dashed perimeter in (c)). 28 Figure 1.4.2-2 Phase diagram of the PS-PLLA BCPs* with respect to overall molecular weight and composition.... 29 Figure 1.4.2-3 (a) TEM micrograph of PS-PLLA solution-cast sample from intermediate evaporation and (b) corresponding 1D SAXS profile. Inset shows the 1D SAXS profiles of PS-PLLA samples from fast, intermediate and slow evaporation.... 31 Figure 1.4.2-4 A constant-thickness structure, based on the G surface, proposed as a possible model for the gyroid morphology at a minority component volume fraction of 0.33. The regime illustrated in this figure is the matrix; the two independent networks are depicted as the white/void regions.... 32 Figure 1.5.1-1. (a) Common functional blocks for the incorporation of inorganic materials into polymer microdomains. (b) Various schenes that have been used to prepare inorganic colloids in BCPs. The various steps include polymerization, micellization, loading of the precursor, ordering, chemical transformation, and nucleation and growth... 32 Figure 1.5.2-1 TEM image of a ternary blend of PS-PEP + AuR1 + SiO2R2, after microsectioning normal to the layer direction (no stain). Au NPs appear as dark spots along the intermaterial dividing surface (IMDS); silica NPs reside in the center of the PEP domain. Inset: Schematic of the particle distribution (size proportions are changed for clarity)... 37 Figure 1.6.1-1 Diagram of carbon nanotube creation based on the carbonization of PAN within a porous AAO membrane.. 39 Figure 1.6.1-2 Schematic illustration of pore-filling processes by (a) air-block releasing, (b) directed capillary force (method 1), and (c) directed capillary force (method 2).. 39 Figure 1.6.2-1 The mechanism of different catalysts for hydrolysis and condensation process of sol-gel process 42 Figure 1.6.2-2 The mechanism of sol-gel process. 44 Figure 1.6.2-3 Schematic illustration of the templation for generating well-defined helical nanohybrids. 45 Figure 3.1-1 Synthetic routes of PS-PLLA by ATRP polymerization and ring open polymerization in sequence. . 55 Figure 3.1.2-1 Synthesis of P3HTs. 56 Figure 3.1.2-3 1H NMR Spectra (500MHz) of P3HT-A (Mn = 20000, PDI= 1.11, head-to-tail=98%). 56 Figure 3.1.2-3 1H NMR Spectra (500MHz) of P3HT (Mn = 15900, PDI= 1.09, head-to-tail=97%). 57 Figure 4.1-1 Schematic illustration for the creation of well-defined nanoporous SiO2 gyroid bulk film from BCP template : (a) PS-PLLA bulk film with three dimensional gyroid morphology. (b) gyroid-forming nanoporous PS template after the removal of minority PLLA network. (c) PS/SiO2 gyroid nanohybrids via the templated sol-gel process. (d) nanoporous gyroid SiO2 after calcination removal of PS template. 63 Figure 4.1.1-1(a) Cross-sectional view TEM micrographs of RuO4 staining PS-PLLA gyroid nanostructures corresponding to the [110] projection (b) One-dimensional SAXS profiles of PS-PLLA gyroid bulk film after solvent annealing.. 65 Figure 4.1.2-1 FESEM cross-sectional view of the nanoporous PS gyroid bulk film with average thickness ~ 3mm.. 67 Figure 4.1.3-1 (a) TEM micrographs of the projected image of the PS/SiO2 gyroid nanohybrids without staining. (b) one-dimensional SAXS profiles of PS/SiO2 gyroid nanohybrids. 69 Figure 4.1.3-3 One-dimensional SAXS profiles of (a) PS-PLLA gyroid bulk film after solvent annealing. (b) nanoporous PS gyroid bulk template after hydrolysis. (c) PS/SiO2 gyroid nanohybrids after sol-gel reaction (d) nanoporous SiO2 gyroid template after calcination.. 70 Figure 4.2.-1 DSC heating and cooling curves of (a) P3HT of molecular weight 20000 g mol-1 (b) PEO of molecular weight 20000 g mol-1 at rates of 10 oC/min.. 72 Figure 4.2.-2 Schematic illustration for the fabrication of well-ordered (a) nanoporous SiO2 gyroid made from nanoporous PS template; (b) P3HT/SiO2 gyroid nanohybrids via infiltration of P3HT solution using chloroform as solvent followed by thermal melting at 260oC; (c) nanoporous P3HT gyroid after removal of SiO2 template by HF etching; (d) P3HT/PEO-LiTFSI gyroid nanohybrids via infiltration of PEO solution using methanol as solvent.. 73 Figure 4.2.1-1TGA thermogram of P3HT with molecular weight 20000 g mol-1. 75 Figure 4.1.2-2 TEM micrograph of the projected image of the P3HT/SiO2 gyroid nanohybrids without staining.. 75 Figure 4.2.2-1 FESEM cross-sectional view of the nanoporous P3HT gyroid bulk film. Inset shows the enlarged FESEM image.. 77 Figure 4.2.2-2 One-dimensional SAXS profiles of (a) nanoporous SiO2 gyroid template after calcination (b) P3HT/SiO2 gyroid nanohybrids after pore-filling (c) nanoporous P3HT gyroid after HF etching... 77 Figure 4.2.3-1 EDS of P3HT/PEO-LiTFSI nanoalloys in bulk-film state after pore-filling process... 80 Figure 4.2.3-2 TEM micrographs of the cross-section image of the P3HT/PEO-LiTFSI nanoalloys (a) without staining. (b) RuO4 staing (c) OsO4 staining . (d) the one-dimensional SAXS profiles of P3HT/PEO-LiTFSI nanoalloys... 81 Figure 4.3.1-1 Conductivity measurements.The Nyquist plot of the P3HT-PEO/LiTFSI mixture sandwiched between nickel electrodes (Z’’ (imaginary) vs Z’ (real) impedance.... 85 Figure 4.3.1-2 Conductivity measurements.(a) the Nyquist plot of the P3HT/PEO/LiTFSI mixture sandwiched between FTO and Au electrodes (Z’’ (imaginary) vs Z’ (real) impedance). (b) the equivalent circuit for the the curve in Nyquist plot………………………………………………..85

    1. Tarascon, J. M.; Armand, M. Nature. 2001,414, 359-367.
    2. Kim, M. G.; Cho. J. Advanced Functional Materials. 2009, 19,1497–1514.
    3. Manthiram, A.; Murugan, A. V.; Sarkar, A.; Muraliganth, T. Energy Environ. Sci. 2008, 1, 621-638.
    4. Etacheri, V.; Marom, R.; Elazari, R.;Salitra, G.; Aurbach, D. Energy Environ. Sci.2011, 4, 3243
    5. Liu, R.; Duaya, Jonathon.; Lee, S. B. Chem. Commun., 2011,47, 1384-1404.
    6. Jiao, F.; Bruce, P. G. Adv. Mater. 2007, 19, 657.
    7. Aricq, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijc, V.
    Nat. Mater. 2005, 4, 366.
    8. Balaya, P.; Bhattacharyya, A. J.; Jamnik, J.; Zhukovskii, Y. F.; Kotomin, E. A.; Maier, J. Journal of Power Sources. 2006, 159, 171.
    9. Meethong, N.; Huang, H. Y. S.; Carter, W. C.; Chiang, Y. M.;
    Electrochem. Solid-State Lett. 2007, 10, A134.
    10.Wang, Y.; Cao, Guozhong Adv. Mater. 2008, 20, 2251–2269.
    11. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew.Chem. Int. Ed. 2008, 47, 2930 – 2946.
    12. Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourg, M. E.; Lubers, A. M. Chem. Soc. Rev., 2009, 38, 226–252.
    13. Long, J. W.; Dunn, B.; Rolison, D. R.;White, H. S. Chem. Rev. 2004,104, 4463–4492.
    14. Choi, J. H.; Ye, Y.; Elabd, Y. A.; Winey, K. I. Macromolecules. 2013, 46, 5290−5300.
    15. Ichikawa, T.; Yoshio, M.; Atsushi, H.; Kagimoto, J.; Ohno, H.; Kato, T. J. Am. Chem. Soc. 2011, 133, 2163–2169.
    16. Itaru Osaka ; Richard D. McCullough. Acc. Chem. Res., 2008, 41, pp 1202–1214
    17. McCullough, R. D. Adv. Mater. 1998, 10, 93-116
    18. Borodin, O.; Smith, G. D. Macromolecules. 2006, 39, 1620-1629.
    19. Stoeva, Z.; Martin-Litas, I.; Staunton, E.; Andreev, Y. G.; Bruce, P. G. J. Am. Chem. Soc. 2003, 125, 4619-4626.
    20.Hallinan Jr., D. T.; Balsara, N. P. Annual Review of Materials Research. 2013, 43.503-525.
    21. Cao, G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, London, 2004.
    22. Das, B.; Subramanium, S.; Melloch, M. R. Semicond. Sci. Technol 1993, 8, 1347.
    23. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    24. Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
    25. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    26. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    27. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    28. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
    29. (a) Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519. (b) Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
    30. Ho, R.-M.; Chiang, Y.-W.; Chen, C.-K.; Wang, H.-W.; Hasegawa, H.; Akasaka, S.; Thomas, E. L.; Burger, C.; Hsiao, B. S. J. Am. Chem. Soc. 2009, 131, 18533.
    31. Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M. Adv. Mater. 2006, 18, 2355.
    32. (a) Martin-Moreno, L.; Garcia-Vidal, F. J.; Somoza, A. M. Phys. Rev. Lett. 1999, 83, 73. (b) Milhaupt, J. M.; Lodge, T. P. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 843. (c) Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 6352.
    33. (a) Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Macromolecules 1997, 30, 3788. (b) Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
    34. Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J. Macromol. Rapid Commun. 2006, 27, 1424.
    35. (a) Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86. (b) Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922. (c) Wang, C. Y.; Lodge, T. P. Macromolecules 2002, 35, 6997. (d) Wang, C. Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
    36. (a) Sakurai, S.; Umeda, H.; Furukawa, C.; Irie, H.; Nomura, S.; Lee, H. H.; Kim, J. K. J. Chem. Phys. 1998, 108, 4333. (b) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Mai, S.-M.; Booth, C. Phys. Chem. Chem. Phys. 1999, 1, 2097.
    37. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986, 19, 215.
    38. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
    39. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
    40. Luzzati, V.; Spegt, P. A. Nature 1967, 215, 701.
    41. Schoen, A. H. NASA TN D-5541, 1970.
    42. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
    43. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
    44. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    45. Tseng, W.-H.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H. J. Am. Chem. Soc. 2009, 131, 1356.
    46. Chen, C.-K.; Hsueh, H.-Y.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H. Macromolecules 2010, 43, 8637.
    47. Merhari, L. Hybrid Nanocomposites for Nanotechnology: Electronic, Optical, Magnetic and Biomedical Applications; Springer, New York, 2009.
    48. Chan, Y. N. C.; Schrock, R. R.; Cohen, R. E. J. Am. Chem. Soc. 1992, 114, 7295.
    49. Forster, S.; Antonietti, M., Adv. Mater. 1998, 10, 195.
    50. Sakai, T.; Alexandridis, P., J. Phys. Chem. B 2005, 109, 7766.
    51. Spatz, J. P.;Sheiko S.; Moller, M., Macromolecule 1996, 29, 3220.
    52. Cuenya, B. R.; Baeck, S. H.; Jaramillo, T. F.; McFarland, E. W., J. Am. Chem. Soc. 2003, 125, 12928.
    53. Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T., Macromolecules 2006, 39, 7352.
    54. Bockstaller, M, R.; Lapetnikov, Y.; Margel, S.; Thomas, E, L., J. Am. Chem. Soc. 2003, 125, 5276.
    55. Furneaux, R. C.; Rigby, W.R.; Davidson, A. P. Nature 1989, 337, 147-149.
    56. Fleisher, R. L.; Price, P. B.; Walker, R. M. Nuclear Tracks in Solids 1975, University of California Press, Berkeley, CA.
    57. Chen, J.-T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M.; Russell, T. P. Adv. Func. Mater. 2006, 16, 1476–1480.
    58. Lo, K.-H.; Tseng, W.-H.; Ho, R.-M. Macromolecule 2007, 40, 2621.
    59. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.
    60. Pierre, A. C. Introduction to Sol-gel Processing; Kluwer Academic: Boston, 1998.
    61. Whitney, T. M.; Jiang, J. S.; Searson, P. C.; Chien, C. L. Science 1993, 261, 1316.
    62. Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U.; Snaith, H. J. Nano Lett. 2009, 9, 2807-2812.
    63. Graham, A. H.; Lindsay, R. W.; Read, H. J. J. electrochem. Soc. 1965, 112, 401.
    64. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
    65. Huigang Zhang, Xindi Yu and Paul V. Braun Nature Nanotechnology 6, 277–281 (2011)
    66. Hsueh, H. Y.; Chen, H. Y.; She, M. S.; Chen, C. K.; Ho, R. M.;Gwo, S.; Hasegawa, H.; Thomas, E. L. Nano Lett. 2010, 10, 4994−5000.
    67. Lascaud S.; Perrier, M.; Vallée, A.; Besner, S.; Prud’homme, J.; Armand, M. Macromolecules 1994, 27, 7469.
    68. Osaka, I.; McCullough, R. D. Acc. Chem. Res., 2008, 41, 1202–1214.
    69. Croce1, F.; Appetecchi1, G. B.; Persi1, L.; Scrosati, B. Nature 1998, 394, 456-458.
    70. Scrosati, B. Chim. Ind. (Milan) 1997,79, 463–471.
    71. Song, J.Y.; Wang, Y.Y.; Wan C.C.J. Power Sources,1999,77,183-197.
    72. Sun, Y. S.; Chung T.M.; Li, Y.J.; Ho, R.M.; Ko , B.T.;Jeng, U.S. Lotz, B. Macromolecules, 2006, 39 , 5782–5788.
    73. Huggins, R. A. Ionics 2002, 8, 300 – 313.
    74. Javier, A. E.; Patel, S. N.; Hallinan. Jr., D. T.; Srinivasan, V; Balsara, N. P. Angew. Chem. Int. Ed. 2011, 50, 9848 –9851.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE