簡易檢索 / 詳目顯示

研究生: 古慈安
Ku, Tzu-An
論文名稱: 石墨烯於光感測元件之應用研究
Graphene Applications in Photodetection
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 李奎毅
徐永珍
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 石墨烯蕭特基光偵測ECR-CVD成長
外文關鍵詞: graphene, Schoktty junction, photodetector, ECR-CVD
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2004年曼徹特大學的Andre Geim與Konstantin Novoselov使用膠帶將石墨烯從高定向熱裂解石墨烯上分離,證明了二維才要可以穩定存在後,眾多科學家爭相投入石墨烯的研究。除了基礎石墨烯物理特性外,石墨烯兼具透明與導電的特性,隨即被應用於光電元件上。光電元件中,入門門檻最低的太陽能電池則為石墨烯應用的首選,而石墨烯/矽蕭特基接面太陽能電池與傳統的ITO蕭特基接面太陽能電池相比,材料與製程上都較為低廉。在2009年IBM團隊首次將石墨烯應用於超高速光感測器,但是石墨烯本身的透光性佳,同時也表示其吸收光能力不足,導致石墨烯的光響應一直無法超越CMOS製程下的光感測器。之後研究石墨烯光感測器也因此多半著重於提升光響應的方向上。除了石墨烯本身材料問題外,在製程方面,欲得到石墨烯薄膜需要經過轉印的步驟,轉印步驟導致了石墨烯無法有效的與CMOS製程結合。本篇論文研究兩種石墨烯薄膜: 經過轉印後的石墨烯與使用ECR-CVD直接成長的石墨烯。兩者分別製作成光感測元件,兩種石墨烯與矽間的蕭特基接面元件特性、兩種光感測元件對光的效能。轉移石墨烯光感測元件在摻雜前的的光響應可達到301 mA/W、摻雜過後可達到302 mA/W。而直接成長石墨烯可以達到90 mA/W。


    In 2004,A.K Geim and K.S. Novoselov successfully isolated a single atomic carbon layer from HOPG using mechanical exfoliation methods. Since then, graphene has attracted enormous interest due to its unique properties. Amongst the physical properties of graphene, its high transmittance and conductive properties have shown great potential for photovoltaic applications. Within optoelectronics, the first choice for graphene applications lies within solar cells. Graphene / silicon Schottky junction solar cells, when compared with conventional ITO Schottky junction solar cell reap serious benefits from graphene technology; this in terms not only of device fabrication but also of materials, since graphene can be largely inexpensive to manufacture.
    In 2009, an IBM team used graphene for ultrafast optical sensors. Graphene’s high transmittance means light absorption cannot be readily achieved; as such the photo-response of graphene is not good as a CMOS sensor. This work focuses on improving photoresponsivity for graphene photodetectors. In addition to the inherent problem of graphene, obtaining graphene necessarily needs a transfer process, the transfer process lead to graphene being effectively combined with the CMOS process. This thesis uses two methods of obtaining graphene: Graphene from transfer process and graphene directly grown on silicon substrate by ECR-CVD. We fabricate two kinds of graphene-Schoktty junction photodetector. We analyze their junction characteristic and their photoelectric effect. The responsivity of pristine transfer graphene device is 301mA/W, doped transfer graphene device is 302 mA/W and ECR graphene device is 90mA/W.

    摘要 I Abstract III 目錄 VII 第一章緒論 1 1.1 動機 1 1.1.1 以矽材料為主的半導體科技 1 1.1.2 目前半導體技術發展侷限 2 1.2 石墨烯 2 1.2.1 石墨烯製備方法 3 1.2.2 石墨烯光元件 6 1.3 論文結構 8 第二章石墨烯基礎物性 11 2.1 單層石墨烯晶格結構 11 2.2 石墨烯的電子聲子能帶 12 2.2.1 石墨烯的電子能帶 12 2.2.2 石墨烯的聲子能帶 14 2.3 石墨烯的電學特性與應用 14 2.4 石墨烯的光學特性與應用 15 2.5 拉曼光譜分析 16 2.5.1 拉曼基本原理 17 2.5.2 拉曼在石墨檢測之應用 17 2.5.3 石墨層數、缺陷的拉曼檢測 19 第三章石墨烯在絕緣基板上化學氣相成長 23 3.1 化學氣相沉積 23 3.1.1 化學氣相沉積反應機制 23 3.1.2 常壓氣相化學沉積 24 3.1.3 電漿輔助化學氣相沉積 25 3.2 高溫金屬催化成長石墨烯 26 3.2.1 銅表面成長機制 26 3.2.2 氣相銅粒子催化成長機制 27 3.3 低溫金屬催化成長 28 3.4 無金屬催化成長 29 3.4.1 實驗設備與結果 30 第四章石墨烯光元件 35 4.1 石墨烯蕭特基能障元件 35 4.1.1 蕭特基接面 35 4.1.2 石墨烯蕭特基接面元件 40 4.1.3 石墨烯/N 型單晶矽蕭特基接面光感測工原理 40 4.2 石墨烯光感測元件 47 4.2.1 光感測元件特性參數 49 第五章石墨烯光感測元件製作與分析 51 5.1 元件製作 51 5.1.1 轉移石墨烯元件製作 51 5.1.2 直接成長石墨烯元件製作 53 5.2 光電量測方法與設備 55 5.2.1 太陽光模擬器量測方法與設備 56 5.2.2 633nm He-Ne 雷測量測方法與設備 59 5.3 轉移石墨烯之光電響應 62 5.4 直接成長石墨烯之光電響應 68 第六章結論與未來展望 73 參考文獻 75

    [1] D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and Tapash Chakraborty. Properties of graphene: a theoretical perspective. Advances in Physics, 59(4):261--482, 2010.
    [2] X. H. An, F. Z. Liu, Y. J. Jung, and S. Kar. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett, 13:909--916--, 2013.
    [3] Y. B. An, A. Behnam, E. Pop, and A. Ural. Metal-semiconductor-metal photodetectors based on graphene/p-type silicon schottky junctions. Appl Phys Lett,102:--, 2013.
    [4] Y. B. An, H. Rao, G. Bosman, and A. Ural. Characterization of carbon nanotube film-silicon schottky barrier photodetectors. J Vac Sci Technol B, 30:--, 2012.
    [5] P. Avouris. Graphene: Electronic and photonic properties and devices. Nano Letters, 10(11):4285--4294, 2010.
    [6] S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei,H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong,and S. Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 5:574--578--, 2010.
    [7] J. Bardeen and W. H. Brattain. The transistor, a semi-conductor triode. Phys Rev,74:230--231--, 1948.
    [8] C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer. Electronic confinement and coherence in patterned epitaxial graphene. Science,312:1191--1196--, 2006.
    [9] S. Bhaviripudi, X. T. Jia, M. S. Dresselhaus, and J. Kong. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper
    catalyst. Nano Lett, 10:4128--4133--, 2010.
    [10] L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago, and M. A. Pimenta. General equation for the determination of the crystallite size l-a of nanographite by raman spectroscopy. Appl Phys Lett, 88:--, 2006.
    [11] C. O. Chui, A. K. Okyay, and K. C. Saraswat. Effective dark current suppression with asymmetric msm photodetectors in group iv semiconductors. Ieee Photonic Tech L, 15:1585--1587--, 2003.
    [12] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood. Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol, 3:210--215--, 2008.
    [13] T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov. Strong plasmonic enhancement of photovoltage in graphene. Nat Commun, 2:--, 2011.
    [14] L. A. Falkovsky and A. A. Varlamov. Space-time dispersion of graphene conductivity. Eur Phys J B, 56:281--284--, 2007.
    [15] T. T. Feng, D. Xie, Y. X. Lin, Y. Y. Zang, T. L. Ren, R. Song, H. M. Zhao, H. Tian, X. Li, H. W. Zhu, and L. T. Liu. Graphene based schottky junction solar cells on patterned silicon-pillar-array substrate. Appl Phys Lett, 99:--, 2011.
    [16] E. H. M. Ferreira, M. V. O. Moutinho, F. Stavale, M. M. Lucchese, R. B. Capaz, C. A. Achete, and A. Jorio. Evolution of the raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys Rev B, 82:--, 2010.
    [17] M. Freitag, T. Low, F. N. Xia, and P. Avouris. Photoconductivity of biased graphene. Nat Photonics, 7:53--59--, 2013.
    [18] N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero. Hot carrier-assisted intrinsic photoresponse in graphene. Science, 334:648--652--, 2011.
    [19] Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, and C. Oshima. Atomic structure of monolayer graphite formed on ni(111). Surf Sci, 374:61--64--, 1997.
    [20] A. K. Geim. Graphene: Status and prospects. Science, 324:1530--1534--, 2009.
    [21] P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer. Ultrafast optical-pump terahertz-probe spectroscopy of the
    carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett, 8:4248--4251--, 2008.
    [22] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly. Doping graphene with metal contacts. Phys Rev Lett, 101:--, 2008.
    [23] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte. Unusual microwave response of dirac quasiparticles in graphene. Phys Rev Lett, 96:--, 2006.
    [24] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima. Waterassisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Abstr Pap Am Chem S, 229:U967--U967--, 2005.
    [25] H.L. Hwang. Solar Cells. wunan, 2008.
    [26] Intel. Moore􀈷s law. http://www.legitreviews.com/article/1082/1/.
    [27] Intel. Roadmap. http://techztalk.com/techwebsite/05-15-10-intel-details-10- yearprocessor-
    development-plan.
    [28] S.O. Kasap. Optoelectronics and Photonics: Principles and Practices. Pearson Education, 2009.
    [29] H. Kim, I. Song, C. Park, M. Son, M. Hong, Y. Kim, J. S. Kim, H. J. Shin, J. Baik, and H. C. Choi. Copper-vapor-assisted chemical vapor deposition for high-quality
    and metal-free single-layer graphene on amorphous sio2 substrate. Acs Nano,7:6575--6582--, 2013.
    [30] T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara,S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara. Production
    of a 100-m-long high-quality graphene transparent conductive film by roll-toroll chemical vapor deposition and transfer process. Appl Phys Lett, 102:--, 2013.
    [31] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens. Hybrid graphene-quantum dot phototransistors
    with ultrahigh gain. Nat Nanotechnol, 7:363--368--, 2012.
    [32] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458:872--U5--, 2009.
    [33] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel. Universal optical conductance of graphite. Phys Rev Lett, 100:--, 2008.
    [34] M. Lazzeri, C. Attaccalite, L. Wirtz, and F. Mauri. Impact of the electronelectron correlation on phonon dispersion: Failure of lda and gga dft functionals
    in graphene and graphite. Phys Rev B, 78:--, 2008.
    [35] X. Li, X. B. Zang, X.M. Li, M. Zhu, Q. Chen, K.L. Wang, M.L. Zhong, J.Q. Wei, and H.W. Zhu. Hybrid heterojunction and solid-state photoelectrochemical solar cells. Adv. Energy Mater., 2014.
    [36] X. M. Li, H. W. Zhu, K. L. Wang, A. Y. Cao, J. Q. Wei, C. Y. Li, Y. Jia, Z. Li, X. Li, and D. H. Wu. Graphene-on-silicon schottky junction solar cells. Adv Mater, 22:2743--+--, 2010.
    [37] X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff. Evolution of graphene growth on ni and cu by carbon isotope labeling. Nano Lett, 9:4268--4272--, 2009.
    [38] X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff. Transfer of large-area graphene films for highperformance
    transparent conductive electrodes. Nano Lett, 9:4359--4363--, 2009.
    [39] X. G. Liang, V. Giacometti, A. Ismach, B. D. Harteneck, D. L. Olynick, and S. Cabrini. Roller-style electrostatic printing of prepatterned few-layer-graphenes. Appl Phys Lett, 96:--, 2010.
    [40] Y. X. Lin, X. M. Li, D. Xie, T. T. Feng, Y. Chen, R. Song, H. Tian, T. L. Ren, M. L. Zhong, K. L. Wang, and H. W. Zhu. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energ Environ Sci, 6:108--115--, 2013.
    [41] G. A. Lopez and E. Mittemeijer. The solubility of c in solid cu. Scripta Mater,51:1--5--, 2004.
    [42] X. K. Lu, M. F. Yu, H. Huang, and R. S. Ruoff. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 10:269--272--, 1999.
    [43] H. Medina. Direct Deposition of Graphene on Oxides and Controllable Doping for Device Applications. National Tsing Hua University PhD. thesis, 2012.
    [44] X. C. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard. High efficiency graphene solar cells by chemical doping. Nano Lett, 12:2745--2750--, 2012.
    [45] E. Monroy, F. Omnes, and F. Calle. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Tech, 18:R33--R51--, 2003.
    [46] T. Mueller, F. N. A. Xia, and P. Avouris. Graphene photodetectors for high-speed optical communications. Nat Photonics, 4:297--301--, 2010.
    [47] K. K. Ng. Complete Guide to Semiconductor Devices. Wiley-IEEE Press, 2002.
    [48] Z. H. Ni, Y. Y. Wang, T. Yu, and Z. X. Shen. Raman spectroscopy and imaging of graphene. Nano Res, 1:273--291--, 2008.
    [49] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim. Room-temperature quantum hall effect in graphene. Science, 315:1379--1379--, 2007.
    [50] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon,45:2017--2021--, 2007.
    [51] B. Partoens and F. M. Peeters. From graphene to graphite: Electronic structure around the k point. Phys Rev B, 74:--, 2006.
    [52] J. D. Plummer, M. Deal, and P. D. Griffin. Silicon VLSI Technology: Fundamentals, Practice, and Modeling. Pearson Education International, 2000.
    [53] S. Reich and C. Thomsen. Raman spectroscopy of graphite. Philos T R Soc A,362:2271--2288--, 2004.
    [54] N. S. Safron, M. Kim, P. Gopalan, and M. S. Arnold. Barrier-guided growth of micro- and nano-structured graphene. Adv Mater, 24:1041--1045--, 2012.
    [55] R. Saito, G. Dresselhaus, and M. S Dresselhaus. Physical Properties Of Carbon Nanotubes. Imperial College Press, 1998.
    [56] R. T. Sanderson. Chemical Bonds and Bond Energy. Academic Press, 1976.
    [57] Y. M. Shi, K. K. Kim, A. Reina, M. Hofmann, L. J. Li, and J. Kong. Work function engineering of graphene electrode via chemical doping. Acs Nano, 4:2689--2694--, 2010.
    [58] R. S. Singh, V. Nalla, W. Chen, W. Ji, and A. T. S. Wee. Photoresponse in epitaxial graphene with asymmetric metal contacts. Appl Phys Lett, 100:--, 2012.
    [59] J. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov. Hot carrier transport and photocurrent response in graphene. Nano Lett, 11:4688--4692--, 2011.
    [60] S. M. Sze and K. K. Ng. Physics of Semiconductor Devices. Wiley, 2006.
    [61] P. Y. Teng, C. C. Lu, K. Akiyama-Hasegawa, Y. C. Lin, C. H. Yeh, K. Suenaga,and P. W. Chiu. Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett, 12:1379--1384--, 2012.
    [62] X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu. Highresponsivity graphene/ silicon-heterostructure waveguide photodetectors. Nat Photonics, 7:888--891--, 2013.
    [63] Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu. Interference enhancement of raman signal of graphene. Appl Phys Lett, 92:--, 2008.
    [64] R. S. Weatherup, B. C. Bayer, R. Blume, C. Ducati, C. Baehtz, R. Schlogl, and S. Hofmann. In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett, 11:4154--4160--, 2011.
    [65] D. P. Wei, J. I. Mitchell, C. Tansarawiput, W. Nam, M. H. Qi, P. D. D. Ye, and X. F. Xu. Laser direct synthesis of graphene on quartz. Carbon, 53:374--379--,2013.
    [66] P. S. Wu. Hybrid graphene / n type c-Si Schottky junction solar cell. National Chiao Tung University Mester thesis, 2013.
    [67] X. D. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen. Photo-thermoelectric effect at a graphene interface junction. Nano Lett, 10:562--566--, 2010.
    [68] H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung, and K. Kim. Graphene barristor, a triode device with a gate-controlled schottky barrier. Science, 336:1140--1143--, 2012.
    [69] Q. K. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei. Graphene segregated on ni surfaces and transferred to insulators. Appl Phys Lett, 93:--, 2008.
    [70] Y. Z. Zhang, T. Liu, B. Meng, X. H. Li, G. Z. Liang, X. N. Hu, and Q. J. Wang. Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun, 4:--, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE