簡易檢索 / 詳目顯示

研究生: 莊梓揚
Chuang, Tzu-Yang
論文名稱: 區塊圖上關於連通 p 中重心問題的改進演算法
Improved Algorithms for the Connected p-Centdian Problem on Block Graphs
指導教授: 王炳豐
Wang, Biing-Feng
口試委員: 王家祥
Wang, Jia-Shung
高孟駿
Kao, Mong-Jen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 48
中文關鍵詞: 連通 p 中重心區塊圖
外文關鍵詞: Connected p-Centdian, Block Graphs
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網絡放置理論 (network location theory) 中最常研究的問題是p中心 (p-center) 和p重心 (p-median) 問題,在這些問題中需要選擇p個頂點。p 中心的目標函數是從每個頂點到所選擇的p個頂點之間的最大加權距離。p重心的目標函數是所有頂點到所選擇的p個頂點之間的加權距離之和。p中重心 (p-centdian) 問題同時考慮中心函數和重心函數。在本論文中,我們研究區塊圖 (block graph) 上的連通p中重心問題,這個問題要求所選擇的p個頂點的導出子圖是連通的。我們考慮了連通p中重心問題的三個變體。第一個稱為帕雷托最優 (Pareto-optimal) 連通p中重心問題 (P-CpCD),其目標是找到中心函數和重心函數的所有帕雷托最優的解集合;第二個稱為連通p中重心問題 (CpCD),其目標是找到一個最佳解,可以最小化重心函數和中心函數按給定係數 (λ, 1  λ) 的凸組合,其中0 ≤ λ ≤ 1;第三個稱為帶有動態係數的連接 p中重心問題 (Dynamic-CpCD),其目標是建構一個針對輸入圖形的資料結構;之後對任意一個接收到的查詢參數 λ,其中 0 ≤ λ ≤ 1,都可以快速找到一個最佳解,可以最小化重心函數和中心函數按給定係數 (λ, 1  λ) 的凸組合。
    對於 P-CpCD,Kang et al. 提出了一個 O(n2) 時間的演算法。我們首先提供一個 O(np) 時間的改進演算法。接著,我們提供一個 O(n) 時間的演算法,這個演算法會以壓縮的格式輸出解答。此外,我們提出了一種新的區塊圖表示方法,並展示了當區塊圖以此表示法輸入時,我們的演算法運行時間為 O(b),其中 b 是輸入圖中區塊的數量。對於 CpCD 問題,在 λ ∈ [1/2, 1] 的請況下,Nguyen et al. 提出了一個 O(n) 時間的演算法,並且將λ ∈ (0, 1/2) 時,是否能在O(n) 時間解決該問題留作一個未解決的問題。我們提出一個對於任意 λ ∈ [0, 1] 都適用的 O(n) 時間算法來解決這個問題。對於dynamic-CpCD,我們提供了一個演算法,在經過 O(n) 時間的預處理後,每個查詢可以在 O(log n + p) 時間內得到回答。


    The most common problems studied in network location theory are the p-center and the p-median problems, in which p vertices are to be selected. The p-center objective function is the maximum weighted distance from each vertex to the selected p vertices. The p-median objective function is the sum of weighted distances from all vertices to the selected p vertices. The p-centdian problem is concerned with both the center and the median function at the same time. In this thesis, we study the connected p-centdian problem on block graphs, in which the induced subgraph of the selected p vertices is asked to be connected. Three variants of the connected p-centdian problem are considered. The first is called the Pareto-optimal connected p-centdian problem (P-CpCD), which is to find all Pareto-optimal p-vertex sets of the center and median functions; the second is called the connected p-centdian problem (CpCD), which is to find a set of connected p-vertex to minimize the convex combination of the median and the center functions with given coefficients (λ, 1  λ), where 0  λ  1; and the third is called the connected p-centdian problem with dynamic coefficients (dynamic-CpCD), which is to build for an input graph a data structure that receives a parameter λ, where 0  λ  1, and returns a connected p-vertex set that minimizes the convex combination of the median and the center functions with coefficients (λ, 1  λ).
    For P-CpCD, Kang et al. had an O(n2)-time algorithm. First, we give an improved O(np)-time algorithm. Then, we present an O(n)-time algorithm, which outputs the solutions in a compact form. Furthermore, we propose a new representation of block graphs and show that our algorithm runs in O(b) time when the input block graph is given in this representation, where b is the number of blocks in the input graphs. For CpCD, Nguyen et al. had an O(n)-time algorithm for λ ∈ [1/2, 1] and left solving the problem in O(n) time for λ ∈ (0, 1/2) as an open problem. We answer this open problem by presenting an O(n)-time algorithm for any λ ∈ [0, 1]. For dynamic-CpCD, we provide an algorithm that answers each query in O(log n + p) time after an O(n)-time preprocessing.

    Abstract i 摘要 ii Contents iii List of Figures iv Chapter 1 Introduction 1 Chapter 2 Preliminaries 5 2.1 Problem definitions 5 2.2 Block graphs and tree representations 7 2.3 Preliminary results 8 Chapter 3 Kang’s O(n2)-time algorithm for P-CpCD 13 Chapter 4 Improved algorithms for P-CpCD 20 4.1 An O(np)-time algorithm 20 4.2 An O(n)-time algorithm 28 4.3 An O(b)-time algorithm 33 Chapter 5 Algorithms for CpCD and dynamic-CpCD 39 5.1 An O(n)-time algorithm for CpCD 39 5.2 An O(n)-time preprocessing algorithm for dynamic-CpCD 40 Chapter 6 Conclusion and future work 43 References 47

    [1]I. Averbakh, O. Berman, Algorithms for path medi-centers of a tree, Computers & Operations Research 26 (1999) 1395–1409.
    [2]C. Bai, L. Kang, E. Shan, The connected p-center problem on cactus graphs, Theoretical Computer Science 749 (2018) 59–65.
    [3]C. Bai, J. Zhou, Z. Liang, The Connected p-Median Problem on Cactus Graphs. Computational Intelligence and Neuroscience (2021) 1–9.
    [4]D. Bantva, D. Liu, Optimal radio labelings of block graphs and line graphs of trees, Theoretical Computer Science 891 (2021) 90–104.
    [5]R. Bapat, S. Roy, On the adjacency matrix of a block graph, Linear Multilinear Algebra 62 (2014) 406–418.
    [6]R.I. Becker, I. Lari, A. Scozzari, Algorithms for central-median paths with bounded length on trees, European Journal of Operational Research 179 (2007) 1208–1220.
    [7]A. Behtoei, M. Jannesari, B. Tseri, A characterization of block graphs, Discrete Applied Mathematics 158 (2010) 219–221.
    [8]S.C. Chang, W.C.K. Yen, Y.L. Wang, J.J. Liu, The connected p-median problem on block graphs, Optimization Letters 10 (2016) 1191–1201.
    [9]Y.H. Chen, Algorithms for the p-centdian problem, Information and Knowledge Engineering (2019) 82–85.
    [10]C.M. Conde, E. Dratman, L.N. Grippo, On the spectral radius of block graphs with prescribed independence number a, Linear Algebra and its Applications 614 (2021) 111–124.
    [11]J. Halpern, The location of a cent-dian convex combination on an undirected tree, Journal of Regional Science 16 (1976) 237–245.
    [12]J. Halpern, Finding minimal center-median combination (cent-dian) of a graph, Management Science 24 (1978) 535–544.
    [13]F. Harary, A Characterization of Block-Graphs, Canadian Mathematical Bulletin 6 (1963) 1–6.
    [14]L. Kang, J. Zhou, E. Shan, Algorithms for connected p-centdian problem on block graphs, Journal of Combinatorial Optimization 36 (2018) 252–263.
    [15]O. Kariv, S. L. Hakimi, An algorithmic approach to network location problems. I: the p-centers, SIAM Journal on Applied Mathematics 37 (1979) 513–538.
    [16]O. Kariv, S.L. Hakimi, An algorithmic approach to network location problems. II: the p-medians, SIAM Journal on Applied Mathematics 37 (1979) 539–560.
    [17]E.J. Kim, O. Kwon, A polynomial kernel for block graph deletion, Algorithmica 79 (2017) 251–270.
    [18]V.B. Le, N.N. Tuy, The square of a block graph, Discrete Mathematics 310 (2010) 734–741.
    [19]C.C. Lin, C.Y. Hsieh, T.Y. Mu, A linear-time algorithm for weighted paired-domination on block graphs, Journal of Combinatorial Optimization 44 (2022) 269–286.
    [20]K.T. Nguyen, N.T. Hung, The inverse connected p-median problem on block graphs under various cost functions, Annals of Operations Research 292 (2020) 97–112.
    [21]K.T. Nguyen, T.H.N. Nhan, W.C. Teh, N.T. Hung, The connected p-median problem on complete multi-layered graphs, Discrete Mathematics, Algorithms and Applications 14 (2022).
    [22]K.T. Nguyen, W.C. Teh, The uniform cost reverse 1-centdian location problem on tree networks with edge length reduction, Vietnam Journal of Mathematics 51 (2023) 345–361.
    [23]K.T. Nguyen, W.C. Teh, N.T. Hung, N.T. Huong, A linear time algorithm for connected p-centdian problem on block graphs, Theoretical Computer Science 923 (2022) 318–326.
    [24]D. Pérez-Brito, J. A. Moreno-Pérez, I. Rodríguez-Martín, The 2-facility centdian network problem, Location Science 6 (1998) 369–381.
    [25]E. Shan, J. Zhou, L. Kang, The connected p-center and p-median problems on interval and circular-arc graphs. Acta Mathematicae Applicatae Sinica (to appear).
    [26]A. Tamir, D. Pérez-Brito, J. A. Moreno-Pérez, A polynomial algorithm for the p-centdian problem on a tree, Networks 32 (1998) 255–262.
    [27]A. Tamir, J. Puerto, D. Pérez-Brito, The centdian subtree on tree networks, Discrete Applied Mathematics 118 (2002) 263–278.
    [28]W.C.K. Yen, The connected p-center problem on block graphs with forbidden vertices, Theoretical Computer Science 47 (2012) 13–24.
    [29]W.C.K. Yen, C.T. Chen, The p-center problem with connectivity constraint, Applied Mathematical Sciences 1 (2007) 1311–1324.
    [30]W.C.K. Yen, S.C.S Yang, Finding Connected p-Centers on Interval Graphs, National Science Council (2009).

    QR CODE