研究生: |
陳漢嘉 Chen, Han-Chia |
---|---|
論文名稱: |
量子分析鋰-空氣電池陰極鉑氮觸媒在奈米碳管/石墨烯的催化機制 Quantum Analysis on the Pt-N Catalytic Mechanism at the Carbon Nano Tube/Graphene Cathode of Lithium-Air Batteries |
指導教授: |
洪哲文
Hong, Che-Wun |
口試委員: |
謝曉星
游靜惠 吳宗信 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 鋰空氣電池 、空氣極 、奈米碳管 、石墨烯 、摻雜 、吸附 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究希望藉由量子力學分析鋰空氣電池(Li-air batteries)中空氣極(air electrode)部分,以奈米碳管及graphene等導電性良好、大表面積之材料取代傳統多孔性碳材料,以提升其電子傳導能力及化學催化性能。傳統鋰空氣電池使用多孔性碳黑(carbon black)混合白金作為工作電極,其導電能力由於金屬催化物與碳黑界面問題,造成電子散失,使催化氧還原反應限制了鋰空氣電池在整體上的效率。奈米碳管摻雜白金和氮,即藉由白金及氮的摻雜改變碳管性質,進而在催化氧氣同時順勢將電子導入,使白金或是摻雜後的碳管催化能力提升。故本論文研究此材料(Pt-doped and N-doped Carbon nanotube)特性來提高鋰空氣電池效率。
在鋰空氣電池中,氧氣的還原速率將決定整體鋰空氣電池之效率,而氧氣催化速率又與白金和空氣極電子導電能力有關。因此本研究採用奈米碳管為空氣極材料摻雜白金方式使電子從白金注入奈米碳管更為容易,加上奈米碳管介於半導體到導體的導電能力與不須考量白金與奈米碳管接觸面界面電子傳導等問題,大大的提升氧氣的催化與整體鋰空氣電池效率。本論文另一嶄新研究為利用氮來取代白金摻雜碳管而使用於電極上,預期可以減少整體花費。本論文加以詳細評估其可行性,並與原白金性能比較。
本研究利用第一原理計算,建立分子尺度的奈米碳管摻雜白金及氮及奈米碳管吸附白金、並加入石墨烯(graphene)模型等,以時間獨立(time independent)的密度泛函理論(density functional theory, DFT),搭配B3LYP(Becke, three-parameter, Lee-Yang-Parr)交換相關泛函,來計算各種不同基底碳材的能隙寬、電子軌道與態密度分布(density of states, DOS)、電子雲分布,並藉由計算後之吸附能比較催化能力,分析電極在微觀下觸媒催化的各種現象。
The most critical process in both low temperature fuel cells and Li/air batteries is the oxygen reduction at the cathode of these electrochemical devices. The rate-limited process of the catalytic mechanism is extremely important to be fully understood in the nanoscale transport phenomena.
This research intends to use computational quantum mechanics to simulate the detailed processes, including oxygen molecule adsorption, water molecule adsorption, and hydroxyl production, on a platinum atom which is doped on the surface of carbon nanotubes (CNT) and graphene nanoribbons (GNS). They are also doped with nitrogen atoms for decreasing the catalyst cost. We use the computational techniques to simulate the catalytic mechanism of the oxygen reduction at the cathode. The 1st step is to dope Pt atoms onto the CNT surface and to dope N atoms onto the graphene nanoribbons, then to observe the phenomenon of the novel electrode adsorbing the oxygen molecule in the atomistic scale. The 3rd step is to break the bond between two oxygen atoms and to generate a hydroxyl radical with one of the hydrogen atoms in the nearby water molecule. It is possible to predict the bonding energy and bond length between atoms and hence the easiness of breaking and recombination of the bonds. The detailed catalytic performance of the novel catalyst at nano scale is predicted in this research.
[1] http://missionzero.org/users/2338-earthpolicy/blogs/367-Global-Car
bon-Dioxide-Emissions-Fall-in-2009-Past-Decade-Still-Sees-Rapid
-Emissions-Growth.
[2] D. Aurbach, M. Daroux, “The electrochemistry of noble in aprotic organic solvents containing lithium salts”, J. of Electroanalytical Chem. ,Vol. 297, Issue 1, pp. 225-244, 1991.
[3] http://news.chinaups.com/154/1001/3717_1.html
[4]http://zh.wikipedia.org/wiki/%E7%9F%B3%E5%A2%A8%E7%83%AF
[5] K. M. Abraham and Z. Jiang, “A polymer electrolyte-based rechargeable lithium/oxygen Battery”, J. Electrochem. Soc., Vol. 143, 1996.
[6] J. Read, “Characterization of the lithium/oxygen organic electrolyte battery”, J. Electrochem., Vol. 149, pp. 1190-1195, 2002.
[7] D. C. Higgins, D. Meza and Z. Chen, “Nitrogen-Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells”, J. Phys. Chem. C, Vol. 114, No. 50, 2010.
[8] J. Read, Mutolo, K., Ervin, M., Behl, W., Wolfenstine, J., Driedger, A., Foster, D. J., “Oxygen transport properties electrolytes and performance of lithium/oxygen battery”, J. Electrochem. Soc., Vol. 150, pp. 1351-1356, 2003.
[9] T. Ogasawara, A. Debart, M. Holzapfel, P. Novak, P. G. Bruce, “Rechargeable Li2O2 electrode for lithium batteries”, J. Am Chem. Soc., Vol. 128, pp. 1390-1393, 2006.
[10] T. Kuboki, T. Okuyama, T. Ohsaki, N. Takami, “Non-aqueous electrolyte air battery for portable information technology equipment consists of non-aqueous electrolyte containing fused salt hydrophobic at normal temperature, and preset amount of specific siloxane compound”, J. Power Source, Vol. 146, pp. 766-769, 2005.
[11]http://big5.nikkeibp.com.cn/news/elec/44958-20090226.html?ref=ML
[12] L. I. Soliman and W. M. Sayed, “Some physical properties of vinylpyridine carbon-black composites”, Egypt. J. Sol., Vol. 25, No. 1, 2002.
[13] http://graphenetimes.com/
[14] P. Dubot and P. Cenedese, “Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes”, Physical Review B, Vol. 63, pp. 241402(R), 2001.
[15] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte/platinum photocell”, Nature, Vol. 261, pp. 402-403, 1976.
[16] R. V. Hull, Liang Li, “Pt nanoparticle binding on functionalized multiwalled carbon nanotubes”, Chem. Mater., Vol. 18, pp. 1780-1788, 2000.
[17] G. Q. Zhang, J. P. Zheng, R. Liang, C. Zhang, B. Wang, M. Hendrickson and E. J. Plichtae, “Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes”, J. Am Chem. Soc., Vol. 157, pp. A953-A956, 2010.
[18] G. Girishkumar, B. McCloskey and A. C. Luntz, “Lithium-air battery : promise and challenges”, The Journal of Physical Chemistry Letters, Vol. 1, pp. 2193-2203, 2010.
[19] Y. Lin and X. Cui, “Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells”, J. Phys. Chem. B, Vol. 109, pp. 14410-14415, 2005.
[20] X. M. Li, W. Q. Tian, Xu-Ri Huang, C. C. Sun, L. Jiang, “Adsorption of hydrogen on novel Pt-doped BN nanotube: A density functional theory study”, Journal of Molecular Structure: THEOCHEM, Vol. 901, pp. 103–109, 2009.
[21] Chia-Liang Sun, Houng-Wei Wang, “Atomic-scale deformation in N-doped carbon nanotubes”, J. Am Chem. Soc., Vol. 128, pp. 8368-8369, 2006.
[22] J.R. Soto, J. Austrich, A. Valladares, “Normal modes of vibration of carbon nanotubes doped with nitrogen towards conducting properties”, Rev. Mex.De Fis. S, Vol. 53, pp. 34-36, 2007.
[23] K. Gong, Feng Du, Z. Xia, “Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction”, Science, Vol. 323, pp. 760-764, 2009.
[24] Shuangyin Wang, Dingshan Yu, Liming Dai, “Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction”, J. Am Chem. Soc., Vol. 133,pp. 5182-5185, 2011.
[25] M. Deifallah, P. F. McMillan and F. Cora`, “Electronic and Structural Properties of Two-Dimensional Carbon Nitride Graphenes”, J. Phys. Chem., Vol. 112, pp. 5447-5453, 2009.
[26] D. Wei, Y. Liu, H. Zhang, L. Huang, “Electronic and structural properties of two-dimensional carbon nitride graphenes”, Nano Lett., Vol. 9, No.5, pp. 1752-1758, 2009.
[27] E. Yoo and H. Zhou, “Li-Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts”, ACS NANO, Vol. 5, No. 4, pp. 3020-3026, 2011.
[28] A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, “Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application”, ACS NANO, Vol. 4, No. 11, pp. 6337-6342, 2010.
[29] G. B. Bachelet, D. R. Hamann, and M. Schlüter, “Pseudopotentials that work: From H to Pu”, Physical Review B, Vol. 26, pp. 4199-4228, 1982.
[30] D. R. Hamann, M. Schlüter and C. Chiang, “Norm-conserving pseudopotentials”, Physical Review Letters, Vol. 43, pp. 1494-1497, 1979.
[31] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy”, Physical Review B, Vol. 45, pp. 13244-13249, 1992.
[32] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A, Vol. 38, pp. 3090-3100, 1988.
[33] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Physical Review B, Vol. 37, pp. 785-789, 1988.
[34] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized gradient approximation made simple” Physical Review Letters, Vol. 77, pp. 3865-3868 , 1996.
[35] L. R. Radovic “Active sites in graphene and the mechanism of CO2 formation in carbon oxidation”, J. Am Chem. Soc., Vol. 131, pp. 17166-17175, 2009.
[36] D. Vanderbilt, “Soft Self-consistent pseudopotentials in a generalized eigenvalue formalism” Physical Review B, Vol. 41, pp. 7892-7895, 1990.
[37] A. D. Becke, ”Density-functional thermochemistry. III. the role of exact exchange”, J. Chem. Phys., Vol. 98, pp. 5648-5652, 1993.
[38] J.-C. Charlier, P. C. Eklund J. Zhu, A. C. Ferrari, “Electron and phono properties of graphene: Their relationship with carbon nanotubes”, Topics Appl. Physics, Vol. 111, pp. 673-709, 2008.
[39] I. N. Levine, Quantum Chemistry 6th ed., Prentice Hall, 2008. (ISBN: 0132358506)
[40] 邱創斌(洪哲文指導), “量子力學與分子動力分析酵素生物燃料電池性能影響因子”,國立清華大學動力機械系博士論文, 1/2010.
[41] 蔡岳璁(洪哲文指導), “計算量子力學於CO在直接甲醇燃料電池觸媒之毒化研究”,國立清華大學動力機械系碩士論文, 6/2006.
[42] Z. Zhou, M. Steigerwald, M. Hybertsen, L. Brus and RA. Friesner, “Electronic Structure of Tubular Aromatic Molecules Derived from Metallic (5,5)Armchair Single Wall Carbon Nanotube”, J. Am Chem. Soc., Vol. 126, pp. 3597-3607, 2003.
[43] Y. C. Lu, Z. Xu, “Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries”, J. Am Chem. Soc., Vol. 132, pp. 12170–12171, 2010
[44] S. Yang, G. L. Zhao and E. Khosravi, “First Principles Studies of Nitrogen Doped Carbon Nanotubes for Dioxygen Reduction”, J. Phy. Chem. C., Vol. 114, pp. 3371-3375, 2010.