簡易檢索 / 詳目顯示

研究生: 余庭達
Ting-Ta Yu
論文名稱: 不同機率之三元幾何均勻量子純態訊號最佳化偵測
On the Optimum Quantum Detection for the Ternary Geometrically Uniform Pure State Signal with Unequal Prior Probability
指導教授: 加藤研太郎
Kantaro Kato
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 51
中文關鍵詞: 量子幾何均勻最佳化偵測三元純態運算子量測
外文關鍵詞: quantum, geometrically uniform, optimum, detection, ternary, pure state, operator, measurement
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子偵測問題的目的是使用量子力學來設計最佳化接收器,以求達到最小的偵測錯誤機率。如果每個被傳送的訊號可以用量子純態向量來表示,我們可以把訊號偵測歸類為兩種情況。當每個訊號所對應的向量是相互正交的,我們可以使用凡紐曼(von Neumann)量測來實現一個無錯誤的通訊系統。相反地,如果訊號所對應的向量是非相互正交的,則沒有一種接收器,或稱為量子量測運算子,可以完美地偵測這些訊號,這就是量子偵測理論本質上所探討的問題。因此,我們討論的是非相互正交的訊號。對於這些訊號,我們希望能設計出最佳化量子量測運算子。

    本篇論文著重在討論三位量子純態的偵測問題。首先,我們研究了在艾爾達(Eldar)論文裡面所提到關於量子訊號偵測問題的相關理論。我們根據她在同機率之幾何均勻(Geometrically Uniform)量子純態的研究結果,使用矩陣形式來表示同機率之三位幾何均勻量子純態的最佳化量測運算子。接下來,我們考慮不同機率之三位幾何均勻量子純態,在此情況下,我們假設其中一個量子純態的優先機率已知,其餘則否。為了解決這個問題,我們建立了最佳化問題,推導出最佳化解答的充分且必要條件,並且使用數值模擬的方法,以求出最佳化量測運算子的解析解。根據數值模擬的結果,我們對最佳化優先機率以及最佳化量測運算子的解析解做了假設。


    This thesis concerns the quantum detection problem for ternary pure state signals. We first review the relevant study on the quantum signal detection problem in the manner determined in Eldar's paper. We verify her result with the ternary geometrically uniform (GU) pure state signal having the uniform prior probability distribution, in which we have used the matrix-form expression of the optimum detection operators. Next, we consider the optimum detection problem for the ternary GU pure state signal
    under the condition that one prior probability is given and the others are unknown. In this situation, we formulate our
    optimization problem and derive the necessary and sufficient
    conditions for the solution of the problem. To seek the
    closed-form expression for the optimum detection operators, we perform the numerical simulation. As a result, we make a
    conjecture on the closed-form expression of the optimum measurement operators and on the optimum prior distribution for our problem.

    第一章 簡介 第二章 量子訊號偵測理論基礎 第三章 先前研究 第四章 同機率之三元幾何均勻量子純態訊號最佳化偵測 第五章 不同機率之三元幾何均勻量子純態訊號最佳化偵測 第六章 結論 附 錄 英文論文本

    1. C. W. Helstrom, "Detection theory and quantum mechanics," Inform. Contr., vol. 10, pp. 254-291, Mar. 1967.

    2. A. Peres, Quantum Theory: Concepts and Methods. Boston, MA: Kluwer, 1995.

    3. A. S. Holevo, "Statistical decisions in quantum theory," J. Multivar. Anal., vol. 3, pp. 337-394, Dec. 1973.

    4. H. P. Yuen, and M. Lax, "On optimal quantum recievers for digital signal detection," Proc. IEEE, pp.1770-1773, Oct. 1970.

    5. H. P. Yuen, R. S. Kennedy, and M. Lax, "Optimum testing of multipple hypotheses in quantum detecion theory," IEEE
    Trans. Inform. Theory, vol. IT-21, pp. 125-134, Mar. 1975.

    6. V. P. Belavkin, "Optimal multiple quantum statistical hypothesis testing," Stochastics, vol.1, pp.315-345, 1975.

    7. E. B. Davies, and J. T. Lewis, "An operational approach to quantum probability," Commun. Math. Phys., vol.17, pp.239-260, 1970.

    8. C. W. Helstrom, Quantum Detecion and Estimation Theory. New York: Academic, 1976.

    9. O. Hirota and S. Ikehara, "Minimax strategy in the quantum detection theory and its application to optical communication," Trans. IECE. Japan, vol. E65, pp. 627-633, Nov. 1982.

    10. M. Osaki, M. Ban and O. Hirota, "Derivation and physical
    interpretation of the optimum detection operators for
    coherent-state signals," Phys. Rev. A, vol. 54, pp.1691-1701, Aug. 1996.

    11. K. Kato, M. Osaki, M. Sasaki, and O. Hirota, "Quantum Detection and Mutual Information for QAM and PSK Signals," IEEE Trans. Commun., vol. 47, pp. 248-254, Feb. 1999.

    12. C. W. Helstrom, "Bayes-cost reduction algorithm in quantum hypothesis testing," IEEE Trans. Inform. Theory,vol.
    IT-28, pp. 359-366, Mar. 1982.

    13. E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, Phys. Rev. A, vol.71, 062326, 2005.

    14. Y. C. Eldar, A. Megretski, and G. C. Verghese, "Designing Optimal Quantum Detectors Via Semidefinite Programming," IEEE Trans. Inform. Theory, vol. 49, pp. 1007-1012, Apr. 2003.

    15. O. Hirota, M. Sohma, M. Fuse, and K. Kato, "Quantum stream cipher by the Yuen 2000 protocol: Design and experiment by an intensity-modulation scheme," Phys. Rev. A,
    vol.72, 022335, Aug. 2005.

    16. K. Kato and O. Hirota, "Quantum Stream Cipher part IV: effects of the deliberate signal randomization and the deliberate error randomization," Proc. of SPIE, Quantum Communications and Quantum Imaging IV, vol.6305,
    630508, 2006.

    17. S. M. Barnett, "Minimum-error discrimination between multiply symmetric states," Phys. Rev. A, vol. 64, no. 030303, 2001.

    18. T. S. Usuda, I. Takumi, M. Hata, and O. Hirota, "Minimum error detection of classical code sending through a quantum channels," Phys. Lett. A, vol.256, pp.104-108, May. 1999.

    19. S. Usami, T. S. Usuda, I. Takumi, and M. Hata, "A simplification algorithm for calculation of the mutual information by quantum combined measurement," IEICE Trans. Fundamentals, vol.E82-A, no.10, pp.2185-2190, Oct. 1999.

    20. T. S. Usuda, S. Usami, I. Takumi, and M. Hata, "Superadditivity in capacity of quantum channel for q-ary linearly dependent real symmetric-state signals," Phys. Lett. A, vol.A305, pp.125-134, Nov. 2002.

    21. Y. Ishida, S. Usami, T. S. Usuda, and I. Takumi, "Properties of quantum gain of coding with information criterion by binary linear codes," IEEJ Trans. (C), vol.126, no.12, pp.1474-1482, Dec. 2006 (jpn); Engl. Transl.: Electronics and Communications in Japan, John Wiley \& Sons, to be published.

    22. M. Charbit, C. Bendjaballah, and C. W. Helstrom, "Cutoff rate for the M-ary PSK modulation channel with optimal quantum detection," IEEE Trans. Inform. Theory, vol. 35, pp.
    1131-1133, Sep. 1989.

    23. K. Kato, O. Hirota, "Square-Root Measurement for Quantum Symmetric Mixed State Signals," IEEE Trans. Inform. Theory, vol. 49, pp. 3312-3317, no. 12, Dec. 2003.

    24. P. Hausladen and W. K. Wootters, "A 'pretty good' measurement for distinguishing quantum states," J. Mod. Opt., vol. 41, pp. 2385-2390, Feb. 1994.

    25. P. Hausladen, R. Jozsa, B. Schumacher, M. Westmore, and W. K. Wootters, "Classical information capacity of a quantum channel," Phys. Rev. A, vol. 54, pp. 1869-1876, Sep. 1996.

    26. A. S. Holevo, "The capacity of the quantum channel with general state signals," IEEE Trans. Inform. Theory, vol. 44, pp. 269-273, Jan. 1998.

    27. B. Schumacher and M. D. Westmoreland, "Sending classical
    information via noisy quantum channels," Phys. Rev. A, vol.
    56, no. 1, pp. 131-138, July 1997.

    28. M. Ban, K. Kurukowa, R. Momose, and O. Hirota, "Optimum
    measurements for discrimination among symmetric quantum states and parameter estimation," Int. J. Theor. Phys., vol. 36, pp. 1269-1288, Jan. 1997.

    29. Y. C. Eldar and G. D. Forney Jr, "On quantum detection and the squareroot measurement," IEEE Trans. Inform. Theory, vol. 47, pp. 858-872, Mar. 2001.

    30. M. Sasaki, K Kato, M Izutsu, and O Hirota, "Quantum channels showing superadditivity in capacity," Physical Review A, vol.58, pp. 146-158, July 1998.

    31. Y. C. Eldar, A. Megretski, and G. C. Verghese, "Optimal Detecion of Symmetric Mixed Quantum States," IEEE Trans. Inform. Theory, vol. 50, pp. 1198-1207, June 2004.

    32. R. S. Kennedy, "On the optimum receiver for the M-ary linearly independent pure state problem," MIT Res. Lab. Electron. Quart. Progr. Rep., Tech. Rep. 110, July 1973.

    33. A. Wald, "Statistical Decision Functions," John Willey \& Sons, Inc., 1950.

    34. P. Shor, "The Adaptive Classical Capacity of a Quantum Channel," LANL arXiv:quant-ph/0206058 v2 16, Jul. 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE