簡易檢索 / 詳目顯示

研究生: 李國愷
Lee, Kuo-Kai
論文名稱: 邊容錯模型之找尋關節點的次線性時間演算法
A Sublinear Algorithm for Identification of Cut Vertices in the Fault Tolerant Model
指導教授: 廖崇碩
Liao, Chung-Shou
口試委員: 謝孫源
Hsieh, Sun-Yuan
王弘倫
Wang, Hung-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 28
中文關鍵詞: 關節點動態圖形容錯模型深度搜尋樹
外文關鍵詞: Articulation points, dynamic graph, fault tolerant, depth- first search
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在圖論中偵測關節點是一個很基本的問題,此問題可以應用於
    網路流通穩定性的分析。在此篇論文中,我們主要解決於圖形之邊
    容錯模型中維持關節點的偵測問題。在此邊容錯模型的設定中,
    一個圖形中的邊允許被刪除(我們解釋為連結失敗),抑或已經被
    刪除的邊可以再被加回到圖形中(我們解釋為連結恢復)。此論文
    達到使用O(mlog n) 的前置處理時間,經過此時間後,我們可
    以花費~O(n + k^2)的時間回報在圖形中的所有關節點,其中m 與n
    分別表示一個圖中的邊數與點數,而k 則表示在一個圖中經過
    多少次的邊刪除或邊恢復的動作. 此篇論文研究結果相較於近期
    Baswana et al. [SODA 2016:730{739] 的~O (nk)更新時間分析結果,其
    於更具有一般性的完全動態模型中解決偵測關節點問題(此模型亦允
    許圖形中邊或點的加入),而我們在動態模型的特殊情況中,也就是
    容錯模型,達到比Baswana et al. [SODA 2016:730{739]更有效率的更
    新時間分析結果。
    我們的研究結果主要發源於Baswana et al. [SODA 2016:730{739]
    以及Nakamura and Sadakane [WALCOM 2017:295{307] 在近期研究
    中的技巧,再巧妙地結合一種新的資料結構,此結構我們稱為「無後
    邊樹」,並在此篇論文中給予此資料結構定義及使用. 更直覺來說,
    前者的的技巧者主要貢獻於搜尋的加速;而後者(無後邊樹) 則使我
    們相較於目前的方法,在找尋關節點上可以更有效率的處理資訊。


    Identi cation of articulation points is a fundamental problem in
    graph theory, which has applications in network stability analysis. In
    this thesis, we focus on maintaining articulation points in a graph G in
    the fault tolerant model, where edges in the graph may be deleted (representing
    link failure) or deleted edges may be added back (representing
    link recovery). We show that by using O(mlog n) preprocessing time,
    we can report all articulation points in G in ~O(n + k^2) time, where m
    and n denote the number of edges and vertices in G, respectively, while
    k denotes the number of edge deletions or recoveries. This result has
    improved a special case in the recent work by Baswana et al. [SODA
    2016:730{739], which maintains articulation points in ~O(nk) time in the
    more general fully dynamic model, where new vertices and new edges
    may also be inserted to G.
    Our result stems from a non-trivial combination of the recent techniques
    by Baswana et al. [SODA 2016:730{739] and by Nakamura and
    Sadakane [WALCOM 2017:295{307], with the use of a novel data structure
    called no-back-edge tree de ned in this thesis. Intuitively speaking,
    the former techniques are for query speed-up, while the latter data
    structure allows us to maintain and process less information than the
    existing approach.

    Contents 1 Introduction 6 1.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Problem de nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Preliminaries 8 3 DFS-based Scan-First Trees 12 4 Fault Tolerant Scan-First Tree Algorithm 16 4.1 Overview of our technique . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Procedure Traversal-within-Subtree . . . . . . . . . . . . . . . . . . . . . 17 4.3 Procedure Traversal-across-subtrees . . . . . . . . . . . . . . . . . . . . . 20 5 Time complexity analysis 24 6 Discussion 25 7 Conclusion 26

    [1] Baswana, S., Chaudhury, S. R., Choudhary, K., and Khan, S. (2016). Dynamic DFS
    in undirected graphs: breaking the O(m) barrier. In Proceedings of the twentyseventh
    Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 730{739).
    Society for Industrial and Applied Mathematics.
    [2] Baswana, S., Choudhary, K., and Roditty, L. (2018). Fault-Tolerant Subgraph for
    Single-Source Reachability: General and Optimal. SIAM Journal on Computing,
    47(1), 80{95.
    [3] Braunschvig, G., Chechik, S., Peleg, D., and Sealfon, A. (2015). Fault tolerant
    additive and (; )-spanners. Theoretical Computer Science, 580, 94{100.
    [4] Chechik, S., Langberg, M., Peleg, D., and Roditty, L. (2010). Fault tolerant spanners
    for general graphs. SIAM Journal on Computing, 39(7), 3403{3423.
    [5] Cheriyan, J., Kao, M. Y., and Thurimella, R. (1993). Scan- rst search and sparse
    certi cates: an improved parallel algorithm for k-vertex connectivity. SIAM Journal
    on Computing, 22(1), 157{174.
    [6] Duan, R. (2010, July). New data structures for subgraph connectivity. In International
    Colloquium on Automata, Languages, and Programming (pp. 201{212).
    Springer, Berlin, Heidelberg.
    [7] Eppstein, D., Galil, Z., Italiano, G. F., and Nissenzweig, A. (1997). Sparsi cation-a
    technique for speeding up dynamic graph algorithms. Journal of the ACM (JACM),
    44(5), 669{696.
    [8] Guha, S., McGregor, A., and Tench, D. (2015, May). Vertex and hyperedge connectivity
    in dynamic graph streams. In Proceedings of the 34th ACM SIGMODSIGACT-
    SIGAI Symposium on Principles of Database Systems (pp. 241{247).
    ACM.
    27
    [9] Henzinger, M. R., and King, V. (1997, July). Maintaining minimum spanning trees
    in dynamic graphs. In International Colloquium on Automata, Languages, and
    Programming (pp. 594{604). Springer, Berlin, Heidelberg.
    [10] Holm, J., De Lichtenberg, K., and Thorup, M. (2001). Poly-logarithmic deterministic
    fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and
    biconnectivity. Journal of the ACM (JACM), 48(4), 723{760.
    [11] Kapron, B. M., King, V., and Mountjoy, B. (2013, January). Dynamic graph connectivity
    in polylogarithmic worst case time. In Proceedings of the twenty-fourth
    annual ACM-SIAM symposium on Discrete algorithms (pp. 1131{1142). Society for
    Industrial and Applied Mathematics.
    [12] Nakamura, K., and Sadakane, K. (2017, March). A space-ecient algorithm for
    the dynamic dfs problem in undirected graphs. In International Workshop on Algorithms
    and Computation (pp. 295{307). Springer, Cham.
    [13] Pettie, S. (2002, July). A faster all-pairs shortest path algorithm for real-weighted
    sparse graphs. In International Colloquium on Automata, Languages, and Programming
    (pp. 85{97). Springer, Berlin, Heidelberg.
    [14] Tarjan, R. (1972). Depth- rst search and linear graph algorithms. SIAM journal
    on computing, 1(2), 146{160.
    [15] Wul -Nilsen, C. (2013, January). Faster deterministic fully-dynamic graph connectivity.
    In Proceedings of the twenty-fourth annual ACM-SIAM symposium on
    Discrete algorithms (pp. 1757{1769). Society for Industrial and Applied Mathematics.

    QR CODE