簡易檢索 / 詳目顯示

研究生: 張文凱
論文名稱: 銀薄膜在鍺(111)基底上的電子結構的光電子能譜研究
Photoemission studies of the electronic structure of Ag/Ge(111)
指導教授: 唐述中
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 104
中文關鍵詞: 量子井態表面電子態薄膜量子尺寸效應
外文關鍵詞: quantum well states, electronic surface state, thin film, quantum size effect
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在新竹的國家同步輻射中心的U9-21B1實驗站成功的在鍺(111)基底上製備原子層平坦的銀薄膜並用高解析度的角解析光電子能譜儀進行量測。我們測量了不同銀薄膜厚度時的表面電子態和量子井電子態(包含第一類型和第二類型),並記錄下數個薄膜厚度的表面電子態和量子井電子態的二維影像。位在鍺(111)基底 位置的第一種類型量子井電子態和位在鍺(111)基底 位置的第二種類型量子井電子態都可以成功的以Bohr-Sommerfeld 量子化規則來計算出其量子井電子態初始能量和薄膜厚度的關聯,我們發現到第一種類型的量子井電子態的理論值和實驗值吻合的非常好,但對第二種類型的量子井電子態則否。另外,介面的相位移和第一種量子井電子態初始能量的關聯也可在這量子化規則的計算中得到。我們還對8單層厚度及15單層厚度的銀薄膜進行了溫度相關的光電子能譜量測,找出了對應於表面電子態及量子井電子態的峰高、峰寬、及峰值如何隨著溫度變化。我們由分析溫度相關的光電子能譜數據得到了表面電子態及量子井電子態的德拜溫度(Debye temperature)、電子和聲子偶合常數的值以及初始能量隨溫度變化的速率。最後我們找出不同薄膜厚度時第一類型量子井電子態和基底鍺的混成強度和各量子數的量子井電子態的有效質量。


    The atomically uniform thin film of Ag/Ge(111) has been investigated by high resolution angle resolved photoemission using Scienta 200 energy analyzer end station with U9-21B1 beam line. The surface state and quantum well states (both first kind and second kind) of Ag films were examined at different coverage. We have analyzed the temperature dependent lineshapes, including peak intensities, peak positions and linewidths, for the spectra of quantum well states and surface states. In addition, the thickness dependence of the effective mass of quantum well state subbands were also studied.

    Chapter 1 Introduction 1 Chapter 2 Experimental Instruments and Techniques 3 2.1 Introduction 3 2.2 Ultra High Vacuum (UHV) 3 2.2.1 Why UHV is Needed 3 2.2.2 How to Get UHV 6 2.2.3 Introduction to Some Vacuum Instruments 7 2.3 Low Energy Electron Diffraction (LEED) 10 2.3.1 Surface Bragg Diffraction 10 2.3.2 LEED Instrument and Pattern 11 2.4 UHV Evaporator 11 2.4.1 Operation of the Evaporator 12 2.4.2 K-cell Evaporator 13 2.5 Photoemission Spectroscopy 14 2.5.1 The Photoemission Process 14 Reference 31 Chapter 3 Background Theory for the Electronic Structure in a Thin Film 32 3.1 Electronic Surface State 32 3.1.1 Introduction 32 3.1.2 Surface States 33 3.2 Quantum Well States 34 3.2.1 Introduction 34 3.2.2 Electron Confinement and Quantization 35 3.2.3 The Bohr-Sommerfeld Phase Model 36 3.2.4 Second Kind Quantum Well States 37 Reference 42 Chapter 4 Ag films on Ge(111) 43 4.1 Sample Preparation 43 4.2 Orientation of the Sample 44 4.3 Determine the Thickness of Thin Films 45 4.4 Quality of the Ag Films 47 4.5 Analysis of the Quantum Well State Peak Position 48 Reference 66 Chapter 5 Temperature Dependent of the Surface State and Quantum Well States on Ag/Ge(111) 68 5.1 Introduction 68 5.2 Intensity Dependence on Temperature 69 5.3 Temperature Dependent Energy Shifts 71 5.4 Temperature Dependence of Linewidths 73 Reference 91 Chapter 6 Effective Mass of the Quantum Well States 93 6.1 What is Effective Mass? 93 6.2 Non Free Electron Like Band Dispersion 94 6.3 Obtain Effective Mass of Quantum Well States 94 6.4 Relationship Between Energy and Effective Mass 96 6.5 Relationship Between Hybridization Interaction and Thickness 97 Reference 102 Chapter 7 Conclusion 103

    [1] T.-C. Chiang, Surf. Sci. Rep. 39, 181 (2000).
    [2] M. H. Upton, C.M. Wei, M.Y. Chou, T. Miller, and T.-C. Chiang,
    Phys. Rev. Lett. 93, 026802,(2004).
    [3] D.-A. Luh, T. Miller, J.J. Paggel, and T.-C. Chiang, Phys. Rev. Lett.
    88, 256802 (2002).
    [4] D.A. Ricci ,Photoemission studies of interface effects on thin film
    properties ,Ph.D. thesis, University of Illinois at Urbana-Champaign(2002).
    [5] M.H. Upton , Photoemission studies of the electronic structure and properties of thin lead films , Ph.D. thesis, University of Illinois at Urbana-Champaign(2001)
    [6] H. L th. Surfaces and interfaces of solids (Springer-Verlag,1993).
    [7] User manual for EFM3 evaporator, Omicron Nanotechnology.
    [8] L. Aballe, C. Rogero, P. Kratzer, S. Gokhale, and K. Horn, Phys. Rev. Lett. 87 ,156801 (2001).
    [9] M. A. Mueller, A. Samsavar, T. Miller, and T.-C. Chiang, Phys. Rev. B 40, 5845 (1989)
    [10] D. A. Ricci, T. Miller, and T.-C. Chiang. Phys. Rev. Lett. 95, 266101 (2005).
    [11] S. Hufner, Photoelectron Spetroscopy, 3rd edn, Springer, 2003.
    [12] Rene Matzdorf, surface science reports, 30, 153-206,(1998).
    [13] C. Kittel, Introduction to Solid State Physics, 6th edn,Wiley, New York, 1996.
    [14] S. Mathias, M. Wiesenmayer, M. Aeschlimann, and M. Bauer, Phys. Rev. Lett. 97, 236809 (2006).
    [15] S.-J. Tang, Y.-R. Lee, S.-L. Chang, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 96, 216803 (2006).
    [16] S.-J. Tang, L. Basile, T. Miller, T.-C. Chiang, Phys Rev. Lett. 93, 216804. (2004).
    [17] D.J. Chadi and C. Chiang, Phys. Rev. B, 23, 1843, (1981).
    [18] A. Wachs, T. Miller, T. Hsieh, A. Shapiro, and T. Chiang, Phys. Rev. B 32, 2326 (1985).
    [19] E.W. Plummer and W. Eberhardt ,Angle-resolved photoemission as a tool for the study of surfaces.
    [20] S.-J. Tang, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 96,036802.(2006).
    [21] M.H. Upton, T. Miller, and T.-C. Chiang, Appl. Phys. Lett. 85, 1235.(2004).
    [22] A. Arranz, J. F. Sanchez-Royo, J. Avila, V. Perez-Dieste, P. Dumas, and M. C. Asensio, Phys. Rev. B 65, 195410 (2002).
    [23] Iwao Matsuda, Han Woong Yeom, Takehiro Tanikawa, Kensuke Tono, Tadaaki Nagao, Phys. Rev. B 63, 125325 (2001).
    [24] A.L. Wachs, A.P. Shapiro, T.C. Hsieh, and T.-C. Chiang, Phys. Rev. B 33, 1460 (1986).
    [25] J.J. Paggel, T. Miller, and T.-C. Chiang, Phys. Rev. B 61, 1804 (2000).
    [26] Kazutoshi Takahashi, Akinori Tanaka, Hiroyuki Sasaki, Wakako Gondo, Shoji Suzuki, and Shigeru Sato, Phys. Rev. B 60, 8748 (1999).
    [27] J. B. Pendry, Low-Energy Electron Diffraction (Academic, London, 1974).
    [28] D. W. Jepsen, P. M. Marcus, and F. Jona, Surf. Sci. 41, 223 (1974).
    [29] S.-J. Tang, Ismail, P. T. Sprunger, and E. W. Plummer, Phys. Rev. B 65, 235428 (2002).
    [30] R. Paniago, R. Matzdorf, G. Meistter. And A. Goldmann, Surf. Sci. 336, L113 (1995).
    [31] J. J. Paggel, T. Miller, and C. –T. Chiang, Phys. Rev. Lett. 83, 1415 (1999).
    [32] J. J. Paggel, T. Miller, T. -C. Chiang, Phys. Rev. Lett. 81, 5632 (1998).
    [33] S. Mathias, M. Wiesenmayer, M. Aeschlimann, and M. Bauer, Phys. Rev. Lett. 97, 236809 (2006).
    [34] A. Eiguren, B. Hellsing, F. Reinert, G. Nicolay, E. V. Chulkov, V. M. Silkin, S. Hufner, and P. M. Echenique, Phys. Rev. Lett. 88 , 066805 (2002).
    [35] D.-A. Luh, T. Miller, J.J. Paggel, and T.-C. Chiang, Phys. Rev. Lett. 88,256802 (2002).
    [36] J. H. Dil, J. W. Kim, Th. Kampen, and K. Horn, Phys. Rev. B,73,161308,(2006).
    [37] Iwao Matsuda and Toshiaki Ohta, Phys. Rev. B, 65,085327,(2002).
    [38] Y. Z. Wu, C. Y. Won, E. Rotenberg, H. W. Zhao, F. Toyoman, N. V. Smith, and Z. Q. Qiu, Phys. Rev. B, 66, 245418 ,(2002).
    [39] J. J. Paggel, T. Miller, T.-C. Chiang, science, 283, 12 (1999).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE