研究生: |
楊晴瑜 Yang, Ching-Yu |
---|---|
論文名稱: |
Syntheses and Growth of BiFeO3 and Bi2Fe4O9 by Hydrothermal Method 水熱法合成及成長BiFeO3與Bi2Fe4O9 |
指導教授: |
蔡哲正
Tsai, Cho-Jen |
口試委員: |
俎永熙
林居南 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 多鐵材料 、表面形貌調變 、陶瓷 |
外文關鍵詞: | multiferroic materials, morphology controll, ceramics |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Multiferroic material is a subject of increasing interest recently. Not only because BiFeO3, with high Curie temperature (TC = 810-830℃) and Neel temperature (TN = 370℃), is one of the multiferroic material, but also because there is another phase, Bi2Fe4O9, exists that has variety of applications. In the present work, the syntheses, characterization, and study of optical properties of single-crystalline BiFeO3 and Bi2Fe4O9 have been done. The two ternary bismuth ferrite compounds can be obtained by conventional hydrothermal method with simple experimental procedure. Besides, the experimental results illustrate that Bi2Fe4O9 with different morphologies can be exactly controlled by adding ethylenediamine as surfactant or by controlling the molar ratio of potassium ions and sodium ions (K+/Na+). Optical absorption properties were confirmed by UV-Vis. The energy band gap of Bi2Fe4O9 is in the visible light-region. Therefore, it has the potential application to be one of the good candidates for visible-light photocatalyst. Moreover, Bi2Fe4O9 has also attracted much attention because of the possible application in photodegredation. In our experiment, we optimize the experimental procedure and provide a simple way to synthesize and growth pure single-crystalline BFO and Bi2Fe4O9 submicron particles with different morphologies.
本研究主要針對鐵酸鉍的兩種相-BiFeO3及Bi2Fe4O9進行合成、表面形貌與結構分析以及對於光學性質的研究。近幾年來,許多研究團隊投入研究具備多鐵性質的BiFeO3薄膜。由於BiFeO3的尼爾溫度與居禮溫度均高於室溫,因此在室溫下,可同時具備鐵電性質與反鐵磁性。故BiFeO3具備特殊的性質,在壓電、磁紀錄、鐵電、terahertz等領域都有很大的潛力可望取代現在的the state-of-the-art。 此外,根據許多文獻指出,當BiFeO3與Bi2Fe4O9小至微奈米尺度,其能階約落在可見光範圍,未來可應用於可見光光觸媒的領域,以取代貴金屬如鉑、鈀等。
在本研究之實驗結果中的合成部分,透過改變攪拌速率、礦化劑(mineralizer)之滴定速率、溶液酸鹼值、加熱時間、反應體積以及前驅物的溶解度等多方變數之控制,進行實驗步驟最優化(optimization),成功透過傳統水熱法合成BiFeO3及Bi2Fe4O9 微奈米結構,且均為單晶結構。此外,實驗結果證實添加乙二胺當作界面活性劑可以成長出不同表面形貌之單晶Bi2Fe4O9。當該系統的酸鹼值逐漸減少時,Bi2Fe4O9 的表面形貌從平板狀逐漸轉變為不規則片狀薄片,甚至產生了如花瓣片狀的特殊結構。這類型的結構具備大量的表面積,有利於未來應用在光觸媒的領域。而實驗結果亦發現,透過調變礦化劑中鈉離子與鉀離子的比例,可得出不同厚度的Bi2Fe4O9片狀結構。以上不同表面形貌的鐵酸鉍系列結構均透過UV-Visible量測,測得此材料的能隙均落於可見光黃光至綠光的波段,且隨著Bi2Fe4O9片狀結構厚度的減少,能隙增加。
藉由改變上述提到之參數,吾人利用水熱法成功合成BiFeO3及Bi2Fe4O9 微奈米結構。而透過研究鈉離子與鉀離子的比例對於Bi2Fe4O9片狀結構厚度影響的機制,可更進一步了解鐵酸鉍系列材料的合成及有關成長機制。相信本實驗結果可提供有關資訊給後續欲用化學方法合成金屬氧化物的研究人員。
Reference
[1] Gustau Catalan and James F. Scott, Adv Mater., 21, 2463-2485,” Physics and Applications of Bismuth Ferrite”, 2009.
[2] N. A. Hill, J. Phys. Chem. B, B104, 6694, ” Why Are There so Few Magnetic Ferroelectrics? ”, 2000.
[3] Charles Kittel,” Introduction to Solid State Physics”, 8th edition.
[4] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Science, 299, 1719-1722, ” Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, 2003.
[5] R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, R. Ramesh, Science, 326, 977-980, ”A Strain-Driven Morphotropic Phase Boundary in BiFeO3”, 2009.
[6] X. Zhang, L. Bourgeois, J. F. Yao, H. T. Wang, and Paul A. Webley, Small, 3, 1523, ”Tuning the Morphology of Bismuth Ferrite Nano- and Microcrystals: From Sheets to Fibers”, 2007.
[7] S. M. Sun, W. Z. Wang, L. Zhang, and M. Shang, J. Phys. Chem. C, 113, 12826, ”Visible Light-Induced Photocatalytic Oxidation of Phenol and Aqueous Ammonia in Flowerlike Bi2Fe4O9 Suspensions”, 2009.
[8] (a) N. I. Zakharchenko, 43, 95, Kinetics and Catalysis, ”Catalytic Properties of the Fe2O3-Bi2O3 System in Ammonia Oxidation to Nitrogen Oxides”, 2002. (b) Q. J. Ruan and W. D. Zhang, J. Phys. Chem. C, 113, 4168, ”Tunable Morphology of Bi2Fe4O9 Crystals for Photocatalytic Oxidation”, 2009.
[9] H. M. Zheng, F. Straub, Q. Zhan, P. L. Yang, W. K. Hsieh, F. Zavaliche, Y. H. Chu, U. Dahmen, and R. Ramesh, Adv. Mater, 18, 2747, ”Self-assembly growth of BFO-CFO nanostructure”, 2006.
[10] S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt , 92, 091905, Appl. Phys. Lett., ”Photoconductivity in BiFeO3 thin films”, 2008.
[11] H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, C. B. Eom, Y. H. Chu, P. Shafer, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, 92, 062910, Appl. Phys. Lett., ”Epitaxial (001) BFO membranes with substantially reduced fatigue and leakage”, 2008.
[12] F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, and J.-M. Liu, Appl. Phys. Lett., 89, 102506-1-102506-3, ”Preparation and photoabsorption characterization of BiFeO3 nanowires”,2006.
[13] T. T. Fang, C. C. Ting, and J. H. Miao, J. Am. Ceram. Soc., 92, 3065-3069,”A Template-Free Synthesis of the One-Dimensional Nanostructure of Multiferroic BiFeO3”, 2009.
[14] S. H. Xie, J. Y. Li, R. Proksch, Y. M. Liu, Y. C. Zhou, Y. Y. Liu, Y. Ou, L. N. Lan, and Y. Qiao, Appl. Phys. Lett., 93, 222904,”Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning”, 2008.
[15] C. M Cho, J. H. Noh, I. S. Cho, J. S. An, and K. S. Hong, J. Am. Ceram. Soc., 91, 3753,”Low-Temperature Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and Their Applications as Visible-Light Photocatalysts”, 2008.
[16] A. Gajovic, S. Sˇturm, B. JanWar, A. Sˇantic, K. Zˇagar, and M. Cˇeh, J. Am. Ceram. Soc., 1-7,” The Synthesis of Pure-Phase Bismuth Ferrite in the Bi–Fe–O System under Hydrothermal Conditions without a Mineralizer”, 2010.
[17] Y. G. Wang, G. Xu, Z. H. Ren, X. Wei, W. J. Weng, P. Y. Du, G. Shen, and G. Han, 90, 2615, J. Am. Ceram. Soc., ” Mineralizer-Assisted hydrothermal synthesis and characterization of BFO nanoparticles”, 2007.
[18] C. Chen, J. Cheng, S. Yu, L. Che, Z. Meng, 291, 135, ”J. Cryst. Growth, Hydrothermal synthesis of perovskite bismuth ferrite crystallites”, 2006.
[19] S. Li, Y. H. Lin, B. P. Zhang, Y. Wang, and C. W. Nan, J. Phys. Chem. C., 114, 2903, ”Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors”, 2010.
[20] X. Z Chen, Z. C. Qiu, J. P. Zhou, G. Zhu, X. B Bian, and P. Liu, 126, 560, Mat. Chem. Phys, ”Large-scale growth and shape evolution of bismuth ferrite particles with a hydrothermal method”, 2011.
[21] Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, and G. Han, 35, 51, Ceramic International, ”Low-temperature synthesis of Bi2Fe4O9 nanoparticles”, 2009.
[22] Y. Xiong, M. Wu, Z. Peng, N. Jiang, and Q. Chen, 33, 502, Chemistry letters, ”Hydrothermal synthesis and characterization of Bi2Fe4O9 nanoparticles”, 2004.
[23] U. A. Joshi, J. S. Jang, P. H. Borse, and J. S. Lee, Appl. Phys. Lett., 92, 242106-1, ”Microwave Synthesis of Single-crystalline Perovskite BiFeO3 Nanocubes for Photoelectrode and Photocatalytic Applications”, 2008.
[24] S. Komarneni, V. C. Menon, Q. H. Li, Rustum Roy, and F. Ainger, J. Am. Ceram. Soc., 79, 1409,”Microwave-Hydrothermal Processing of BiFeO3 and CsAl2PO6”, 1996.
[25] S. Y. Yang, a F. Zavaliche, and L. Mohaddes-Ardabili, 87, 102903, Appl. Phys. Lett., ”Metalorganic CVD of lead-free ferroelectric BFO films for memory applications”, 2005.
[26] K. Byrappa and T. Adschiri, Progress in Crystal Growth and Characterization of Materials, 53, 117, ”Hydrothermal technology for nanotechnology”, 2007.
[27] K. Byrappa, M. Yoshimura, Noyes Publications, New Jersey, USA, ”Handbook of Hydrothermal Technology”, 2001.
[28] L. N. Demianets, A. N. Lobach, Angew. Chem. Int. Ed., 14, 509, ”Hydrothermal synthesis of crystal”, 1979.
[29] L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, and Y. Wang, Crystal. Grow. Des., 11, 1049, ”Visible Light Responsive Perovskite BiFeO3 Pills and Rods with Dominant {111}c Facets”, 2011.
[30] L. Xiaomeng, X. Jimin, S. Yuanzhi, L. Jiamin, J. Mater. Sci., 42, 6824, ”Surfactant-assisted hydrothermal preparation of submicrometer-sized two-dimensional BiFeO3 plates and their photocatalytic activity”, 2007.
[31] J. T. Han, Y. H. Huang, X. J. Wu, C. L. Wu, W. Wei, B. Peng, W. Huang, and J. B. Goodenough, Adv. Mater., 18, 2145, ”Tunable Synthesis of Bismuth Ferrites with Various Morphologies”, 2006.
[32] T. J. Park, G. C. Papaefthymiou, A. R. M., Y. Mao and S. S. Wong, J. Mater. Chem., 15, 2099, ”Synthesis and characterization of submicron single-crystalline Bi2Fe4O9 cubes”, 2005.
[33] X. Zhang, J. Lv, L. Bourgeois, J. Cui, Y. Wu, H. Wang and P. A. Webley, New J. Chem., 35, 937, ”Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies”, 2011.
[34] Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, Ge Shen, and G. Han, J. Am. Ceram. Soc., 90, 2615-2617,”Alkali Metal Ions-Assisted Controllable Synthesis of Bismuth Ferrites by a Hydrothermal Method”, 2007.
[35] H. Zhang and K. Kajiyoshi, J. Am. Ceram. Soc.,93, 3842, ”Hydrothermal Synthesis and Size-Dependent Properties of Multiferroic Bismuth Ferrite Crystallites”, 2010.
[36] Y. Mao, T. J. Park and S. S. Wong, Chem.Comm, 2708,”Synthesis of classes of ternary metal oxide nanostructures”, 2005.
[37] http://www.oxcryo.com/data/software/downloads/cgraph.html
[38] D. Souri, M. Elahi, Indian J. Pure Appl. Phys. ,44, 419, ”Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60 - x) V2O5 –40 TeO2 –xSb2O3 glasses”, 2006.
[39] M. Pal, K Hirota, Y Tsujigami and H Sakata, J. Phys. D: Appl. Phys., 34, 459, ”Structural and electrical properties of MoO3-TeO2 glasses” , 2001.
[40] N. Chopra, A. Mansingh and G.K. Chadha, J. Non-Cryst. Solids, 126, 194, ”Electrical, optical and structural-properties of amorphous V2O5-TeO2 blown films”, 1990.
[41] G. Turky, M. Dawy, Mater. Chem. Phys., 77, 48, ”Spectral and electrical properties of ternary (TeO2–V2O5–Sm2O3) glasses”, 2003.
[42] N.F. Mott, E.A. Davis, Electron. Process Non-Cryst. Mater., Clarendon, Oxford, 1979.
[43] J. Tauc, A. Menth, J. Non-Cryst. Solids, 8, 569, ” State in the Gap”, 1972.
[44] Y. W. Jun, J. S. Choi, and J. Cheon, Angew. Chem. Int. Ed., 45, 3414, ”Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes”, 2006.
[45] Y. Sun, B. Mayers, T. Herricks, and Y. Xia, Nano Lett., 3, 955, ”Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence”, 2003.
[46] Y. Xiong and Y. Xia, Adv. Mater., 19, 3385, ”Shape-Controlled Synthesis of Metal Nanostructures: The Case of Palladium”, 2007.
[47] S. S. Zumdahl, Chemical Principles, 5th editions.
[48] http://en.wikipedia.org/wiki/Ethylenediamine .
[49] F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, and J. M. Liu, Adv. Mater., 19, 2889, ”Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles”, 2007.
[50] S. Li, Y. H. Lin, B. P. Zhang, J. F. Li, and C. W. Nan, J. Appl. Phys., 105, 054310, ”BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism”, 2009.
[51] Y. Xiong, M. Wu, Z. Peng, N. Jiang, and Q. Chen, Chem. Lett., 33, 502, ”Hydrothermal Synthesis and Characterization of Bi2Fe4O9 Nanoparticles”, 2004.
[52] Xinglong Gou , Rong Li , Guoxiu Wang , Zhixin Chen and David Wexler, Nanotechnology, 20, 495501, ” Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application”, 2009.
[53] P. Pinceloup, C. Courtois, J. Vicens, A. Leriche a and B. Thierry, Jounal of European Ceramic Society, 19, 973, ” Evidence of a Dissolution-Precipitation Mechanism in Hydrothermal Synthesis of Barium Titanate Powders”, 1999.
[54] P. Chen, X. Xu, C. Koenigsmann, A. C. Santulli, S. S. Wong, and J. L. Musfeldt, Nano Letters, 10, 4526,” Size-Dependent Infrared Phonon Modes and Ferroelectric Phase Transition in BiFeO3 Nanoparticles”, 2010.
[55] T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Letters, 7, 266,” Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles”, 2007.