簡易檢索 / 詳目顯示

研究生: 蔡宗穎
論文名稱: 碳化咖啡灰: 新導電奈米碳材及其電磁波屏蔽測量
Carbonized coffee residues: A new type of conductive nanoparticles and its electromagnetic interference shielding
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 許景棟
Hsu, Ching-Tung
呂昇益
Lu, Sheng-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 電磁波屏蔽奈米碳管咖啡
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要探討新穎導電奈米碳材料之製備: 碳化的咖啡灰
    (carbonized coffee residues)。以環氧樹脂(epoxy)為基材,碳化後咖啡
    灰/多壁奈米碳管(multi-walled carbon nanotubes, 多壁奈米碳管)為電
    磁波吸收劑,用來進行電磁波屏蔽效應之量測。並利用導電度、介電
    常數、阻抗等數值來分析效應。
    使用碳化後的咖啡灰為導電性填充物製成高分子試片,實驗結果
    可得到良好的電磁波屏蔽效果。並在之後將多壁奈米碳管混入咖啡灰
    中製成高分子試片,利用多壁奈米碳管的高導電性和高長徑比特性,
    討論多壁奈米碳管對試片屏蔽效應的改變。


    A new type of conductive nanoparticles made by carbonizing coffee residues is demonstrated in this work. Composites made from epoxy and coffee ash/multi-walled carbon nanotubes (MWCNTs) are used as electromagnetic interference (EMI) shielding and shielding effectiveness is analyzed, along with impedance, conductivity and permittivity.
    An excellent EMI shielding effectiveness by controlling different proportion of coffee ash in Epoxy matrix is detected. Furthermore, change in EMI shielding effectiveness is presented with dispersion of MWCNTs in coffee ash/Epoxy composites. Shielding phenomenon is explained according to coffee ash/MWCNTs/Epoxy composite’s impedance, conductivity and permittivity.

    總目錄 內容 摘要 ........................................................................................................................................... 2 Abstract ..................................................................................................................................... 3 總目錄 ....................................................................................................................................... 6 圖目錄 ....................................................................................................................................... 8 表目錄 ....................................................................................................................................... 9 實驗動機 ................................................................................................................................. 10 第一章 文獻回顧 ................................................................................................................. 11 1- 1 碳化咖啡渣及奈米碳管的簡介 ............................................................................. 11 1- 2 奈米碳管及相關奈米顆粒的表面結構與電性 ..................................................... 12 1-2- 1 奈米碳管及相關碳材之基本結構 ................................................................. 12 1-2- 2 奈米碳管及相關碳材之基本電性 ................................................................. 13 1-2- 3 奈米碳管及相關碳材之表面特性 ................................................................. 17 1- 3 展透理論 (Percolation Theory) ........................................................................... 18 1- 4 導電高分子 ............................................................................................................. 20 1- 5 電磁波屏蔽理論 ..................................................................................................... 21 1-5- 1 反射損失 ......................................................................................................... 22 1-5- 2 吸收損失 ......................................................................................................... 23 1-5- 3 多重反射損失 ................................................................................................. 25 1-5- 4 電磁波屏蔽效應 ............................................................................................. 25 第二章 實驗步驟 ................................................................................................................. 28 2- 1 實驗藥品及儀器 ..................................................................................................... 28 2- 2 實驗流程 ................................................................................................................. 29 7 2- 3 實驗步驟 ................................................................................................................. 31 第三章 實驗結果與討論 ..................................................................................................... 35 3- 1 熱重儀器分析 (TGA) ............................................................................................ 35 3- 2 SEM ........................................................................................................................ 38 3-2- 1 碳化後咖啡灰 ................................................................................................. 38 3-2- 2 碳化後咖啡渣/多壁奈米碳管 ....................................................................... 42 3- 3 能量散佈分析儀(energy dispersive X-ray spectrometer, EDX) ........................ 51 3- 4 拉曼光譜(Raman) .................................................................................................. 54 3- 5 電性量測 ................................................................................................................. 59 3- 6 電磁波屏蔽(EMI)量測 .......................................................................................... 64 3-6- 1 介電系數與濃度、頻率之間關係 ................................................................. 64 3-6- 2 EMI 值之間關係 .............................................................................................. 71 第四章 結論 ......................................................................................................................... 78 第五章 參考文獻 ................................................................................................................. 79

    79

    第五章 參考文獻
    [1] J.T. McGhee, Water Supply and Sewage, McGraw-Hill, New York,
    1991.
    [2] S.L. Lee, Biores. Technol. 64 (1998) 217.
    [3] Carter T.W.; John W.M.J.Phys. Chem. B 109,52-56(2005)
    [4] Saito R, Dresselhaus MS, Dresselhaus G. Physical Properties of
    Carbon Nanotubes. Imperial College9 (1998).
    [5] Dresselhaus MS, Dresselhaus G, Eklunk PC. Science of Fullerenes &
    Carbon Nanotubes. San Diego:Academic Press (1996).
    Dresselhaus MS, Eklund PC. Adv Phys. 49, 705 (2000).
    [6] R. Waser, Nanoelectronics and Information Technology, Wiley-VCH,
    2003
    [7] N. Hamada, S.-I. Swada, A. Oshiyama, Phys. Rev. Lett. 68, 1579
    (1992).
    [8] J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631
    (1992).
    [9] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys.
    Lett. 60, 2204 (1992).
    [10] Ci, L,; Wei, J.;Wei, B;Liang, J.;Xu, C.;Wu, D. Chem. Phys. Lett.
    80

    362,285 (2002)
    [11] Noriaki H. ; Shin-ichi S. ; Atsushi O. A. Phys. Rev. Lett. 1992
    68,1579-1581
    [12] 金子克美.固體物理。1992, 27:403 (2001).
    [13] Barklie, Phys. Rew. B 58, R7492 (1998)
    [14] J. T. Wescott, P. Kung, A. Maiti, App. Phys. Lett. 90, 033116 (2007)
    [15] J. Fourier, G. Boiteux, G. Seytre, G. Marichy, Synth. Met. 84, 839
    (1997)
    [16] 陳婉, 梁成浩, 謝陽, 本征導電聚合物開發的最新進展, 電
    化學, 7(4), 396, (2001)
    [17] 付東升, 張康助, 張強, 導電高分子材料研究進展, 現代塑
    膠加工應用, 16(1), 55, (2004)
    [18] 潘成, 方鯤, 周志飆, 毛衛民, 郭志猛, 導電高分子電磁屏蔽
    材料研究進展, 安全與電磁兼容, 三月號, (2004)
    [19] Paul, Clayton R. “Field and Wave Electromagnetic”, Reading,
    Mass.Addison Wesley,pp198-219, (1989)
    [20] White, Donald R. J., Mardiguian, Michel “Electromagnetic
    Shielding”, A handbook series on electromagnetic interference and
    compatibility, Vol. 3, chapter 2,6 and7, (1988)
    81

    [21] Donald R.J. Electromagnetic Shielding, Don White
    Con,1980,p2.1~2.6
    [22] Vinoy, K. J.;Jha, R. M. Radar absorbing materials:From theory to
    design and characterizatiom. Boston: Kluwer Academic Publishers,
    pp52-56, (1996)
    [23] Cheng, David K.”Field and Wave electromagnetic”,Reading, Mass,
    Addison Wesley, pp198-219, (1989)
    [24] Masek, O.; Konno, M.; Hosokai, S.; Sonoyama, N.; Norinaga,K.;
    Hayashi, J. I. A study on pyrolytic gasification of coffee groundsand
    implications to allothermal gasification. Biomass Bioenergy
    2008 32,78−89.
    [25] Williams, P. T.; Besler, S. The influence of temperature and heating
    rate on the pyrolysis of biomass. Renewable Energy 1996,7,233−250.
    [26] Tsai, Wen-Tien; Liu, Sii-Chew
    [27] Effect of temperature on thermochemical property and true density of
    torrefied coffee residue. JOURNAL OF ANALYTICAL AND
    APPLIED PYROLYSIS 2013 102,47-52.
    [28] Bok, J. P.; Choi, H. S.; Choi, Y. S.; Park, H. C.; Kim, S. J. Fast.
    pyrolysis of coffee grounds: Characteristics of product yields and
    82

    biocrude oil quality. Energy 2012, 47, 17−24.
    [29] Liu Z, Bai G, Huang Y, Ma Y, Du F, et al. Reflection and absorption
    contributions to the electromagnetic interference shielding of
    single-walled carbon nanotube/polyurethane composites.
    Carbon 2007;45:821–7.
    [30] Che RC, Peng LM, Duan XF, Chen Q, Liang XL. Microwave
    Absorption Enhancement and Complex Permittivity and Permeability
    of Fe Encapsulated within Carbon Nanotubes. Adv. Mater.
    2004;15(5):401–5.
    [31] Liu L., Matitsine S,. Gan Y. B., Chen L. F., Kong L. B. J. Appl.
    Phys.101,094106 (2007)
    [32] Holzheimer T. A broadband materials measurements technique using
    the full frequency extent of the network analyzer. 2002 Anten. appl.
    symp. 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE