研究生: |
葉俊佳 Chun-Chia Yeh |
---|---|
論文名稱: |
奈米級金屬-氧化物-半導體場效電晶體閘極漏電流與等效長度鑑析 Characterization of Gate Leakage Current and Channel Length of Nanometer-scaled MOSFETs |
指導教授: |
龔正
J. Gong |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 閘極漏電流 、源極/汲極延伸區 、等效長度 |
外文關鍵詞: | gate leakage current, SDE, effective channel length |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究是65奈米金氧半場效電晶體(MOSFET)直流特性的分析,內容包含兩大部分:閘極漏電流分析模型的建立以及源-汲極電流-電壓特性參數的萃取。
在閘極漏電流的分析中利用一組(bin)長寬組合內某些量測到的閘極漏電流 (IG)加上一個簡單的數學運算方法,可以找出漏電流的模型參數。利用這一組參數,可以準確預估這一組長寬範圍內其他長寬比電晶體的閘極漏電流。在此運算中考慮了淺溝渠隔離區 (STI)和源極/汲極延伸區 (SDE)對閘極漏電流的影響。在模擬的過程中只需要3個參數,而且不必理會會造成嚴重困擾的有效長度 (Leff)與有效寬度 (Weff)等問題。在本實驗中,我們驗證了此方法對於90奈米與65奈米元件的準確度,同時,我們也針對這3個參數受溫度的影響做了研究。由最後的結果來看,此方法可以準確、有效的估算出閘極漏電流在不同尺寸電晶體內隨偏壓與溫度的變化。
在源-汲極電流-電壓特性參數萃取方面,本論文採用了shift-and ratio (S&R)的觀念來計算等效通道長度(Leff)和源極/汲極電阻(RSD)。根據S&R的理論基礎,我們在計算等效通道長度和源極/汲極電阻時,修正了下面列出的效應:1. 還原閘極漏電流過大時的汲極電流,2. 速度飽和模型, 3. 擴散電流對於汲極電流的影響。將上述因素納入考慮後,我們可以推導出和Leff及RSD相關的8個非線性方程式。透過這些方程式的疊代計算去得到Leff和RSD隨VGS而改變的函數。擴散電流對65奈米元件特性的影響在本論文內會有深入且詳細的分析。
This dissertation contains the DC characterization of nanometer-scaled metal-oxide-semiconductor field-effect-transistors. Two major achievements are obtained: the establishment of a gate leakage current model and accurate parameter extraction from the drain to source current-voltage relations.
In first achievement, a mathematical method of modeling the gate leakage current IG is presented. Both the shallow trench isolation effect and the source drain extension effect on IG are included. With suitably chosen transistor dimensions the parameter extraction can be performed with the devices’ drawn size, the troublesome effective device length and width is not necessary in this model. The extracted parameters were used to predict IG of devices with other different dimensions. Transistors fabricated with 90nm and 65nm technologies were examined. The extracted parameters and their temperature dependence were used to predict IG of devices with other dimensions, excellent accuracy is verified.
In second achievement, the concepts of shift-and-ratio (S&R) method are used. According to this foundation, we point out some different viewpoints that include a drain current corrected by gate leakage current, surface potential, velocity saturation model, and diffusion current portion of the drain current. After considering these factors which relate to the effective channel length (Leff) and source/drain series resistance (RSD) and we can get eight nonlinear equations. Then, iteration method is applied to solve these equations to obtain accurate RSD and Leff. Because RSD and Leff are two inseparable device parameters, therefore, the iterated steps can obtain more accurate parameters simultaneously. The results differ from that obtained from the original S&R method; both our outcomes are function of VGS. Furthermore, our algorithm only needs to measurement IDS-VGS curve before calculating the results. Therefore, this proposed method can be easily implemented in MOSFET’s modeling.
[1] J. D. Plummer and P. B. Griffin, Proceedings of the IEEE, vol. 89, 2001, p. 240-258.
[2] Y. Taur and T. J. Watson, IEEE Spectrum, vol. 36, 1999, p. 25.
[3] N. Yang, W. K. Henson, J. R. Hauser and J. J. Wortman, IEEE Trans. Electron Devices, vol. 46, p. 1464, 1999.
[4] W. C. Lee and C. Hu, IEEE Trans. Electron Devices, vol. 48, 2001, p. 1366.
[5] K. M. Cao, W. C. Lee, W. Liu, X. Jin, P. Su, S. K. H. Fung, J. X. An, B. Yu and C. Hu, IEDM Tech. Dig., 2000, p. 815.
[6]W. K. Shih, R. Rios, P. Packan, K. Mistry and T. Abbott, IEDM Tech. Dig., 2001, p. 293.
[7] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi and M. Bohr, IEDM Tech. Dig., 2000, p. 174.
[8] D. Lee, D. Blaauw and D. Sylvester, IEEE transactions on very large scale integration (VLSI) systems, vol. 12, 2004, p. 155.
[9] Y. Taur, IBM J. Res. Dev., vol. 46, 2002, p. 213.
[10] B. Yu, H. Wang, C. Riccobene, Q. Xiang and M. R. Lin, IEDM Tech. Dig., 2000, p. 91.
[11] S. Thompson, P. Packan, T. Ghani, M. Stettler, M. Alavi, I. Post, S. Tyagi, S. Ahmed, S. Yang and M. Bohr, IEDM Tech. Dig., 1998, p. 132.
[12] N. Yang, W. K. Henson and J. J. Wortman, IEEE Trans. Electron Devices, vol. 47, 2000 p. 1636.
[13] L. F. Register, E. Rosenbaum and K. Yang, Appl. Phys. Lett., vol. 74, 1999, p. 457.
[14] H. S. Momose, S. I. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata and H. Iwai, IEEE Trans. Electron Devices, vol. 45, 1998, p. 691.
[15] H. S. Huang and I. K. Chen, Proc. 12th VLSI Design/CAD Symposium, 2001 p. 205.
[16] K. N. Yang, H. T. Huang, M. J. Chen, Y. M. Lin, M. C. Yu, S. M. Jang, C. H. Yu and M. S. Liang, IEDM Tech. Dig., 2000, p. 679.
[17] H. Watanabe, K. Matsuzawa and S. Takagi, IEEE Trans. Electron Devices, vol. 45 ,2003, p. 1779.
[18] C. H. Choi, Z. D. Yu and W. Robert, Superlattices Microstruct, vol. 27, 2000, p. 191.
[19] L. R. Van, A. J. Scholten, R. Duffy, F. N. Cubaynes, M. J. Knitel and D. B. M. Klaassen,
IEDM Tech. Dig., 2001, p. 289.
[20] Y. C. Yeo, Q. Lu, W. C. Lee, T-J King, C. Hu, X. Wang, X. Guo, and T. P. Ma, IEEE
Electron Device Letters, vol. 21, 2000, p. 540.
[21] H. Iwata, T. Matsuda and T.Ohzone, Jpn. J. Appl. Phys. Part 1, vol. 42, 2003, p. 3364–3367.
[22] G. Xin, T. L. Chen, G. Gildenblat, G. O. Workman, S. Veeraraghavan, S. Shapira, and K. Stiles,
IEEE Trans. Electron Devices, vol. 51, 2004, p. 127.
[23] A. Agarwal, C. H. Kim, S. Mukhopadhyay, and K. Roy, DAC, 2004.
[24] S. Sleva, Y. Taur, IEEE Trans. Electron Devices, vol. 52, 2005, p. 2814.
[25] K. Roy et al. Proceeding of IEEE, Feb, 2003.
[26] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 1998, p. 127.
[27] S. Mukhopadhyay et al. Proceedings of DAC, 2003.
[28] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 1998, p. 120.
[29] J. M. Rabaey, Digital Integrated Circuits. Englewood Cliffs, NJ, Prentice-Hall, 1996, p. 55.
[30] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 1998, p. 128.
[31] K. Roy, S. Mukhopadhyay, and hamid mahmoodi-meimand, proceedings of the IEEE, vol. 91, 2003.
[32] R. Pierret, Semiconductor Device Fundamentals. Reading, MA, Addison-Wesley, 1996, p. 235.
[33] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York, Cambridge Univ. Press, 1998, p. 94.
[34] Low-Power CMOS VLSI Circuit Design. New York, Wiley, 2000, p. 27.
[35] K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design. New York, Wiley, 2000, p. 28.
[36] V. De, Y. Ye, A. Keshavarzi, S. Narendra, J. Kao, D. Somasekhar, R. Nair, and S. Borkar, Design of High-Performance Microprocessor Circuits, A. Chandrakasan, W. Bowhill, and F. Fox, Eds. Piscataway, NJ, IEEE, 2001, p. 48.
[37] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York, Cambridge Univ. Press, 1998, p. 97.
[38] Fundamentals of Modern VLSI Devices. New York, Cambridge Univ. Press, 1998, p. 95–97.
[38] K. Schuegraf and C. Hu, IEEE Trans. Electron Devices, vol. 41, 1994, p. 761.
[40] BSIM Group. BSIM4.2.1 MOSFET Model. Univ. California, Berkeley. [Online]. Available: http://www-device. eecs.berkeley.edu/~bsim3/
[41] K. Cao,W.-C Lee,W. Liu, X. Jin, P. Su, S. Fung, J. An, B. Yu, and C. Hu, Tech. Dig. Int. Electron Devices Meeting, 2000, p. 815.
[42] F. Hamzaoglu and M. Stan, Proc. Int. Symp. Low Power Design, 2002, p. 60.
[43] Thomas, Ajish, Dept. of Microsystems, Rochester Institute of Technology, 2003, p. 712.
[44] K. N. Yang et al, IEEE Transactions on Electron Device, vol. 48, 2001
[45] Thomas, Ajish, Dept. of Microsystems, Rochester Institute of Technology, 2003, p. 854.
[46] L. F. Register, E. Rosenbaum, and K. Yang, Appl. Phys. Lett., vol. 74, 1999, p. 457.
[47] S.Thompson et al, Symposium on VLSl Technology Digest of Technical Papers, 1998, p. 124.
[48] Y. Taur, D. S. Zicherman, D. R. Lombardi, P. J. Restle, C. H. Hsu, H. I. Hanafi, M. R. Wordeman, B. Davari, and G. G. Shahidi, IEEE Electron Device Lett., vol. 13, 1992, p. 267.
[49] K. Ahmed, I. De, C. Osburn, J. Wortman and J. Hauser, IEEE Trans. Electron Devices, vol. 47, 2000, p. 891.
[50] H. van Meer, K. Henson, J. H. Lyu, M. Rosmeulen, S. Kubicek, N. Collaert and K. D. Meyer, IEEE Electron Device Lett., vol. 21, 2000, p. 133.
[51] C. W. Eng, W. S. Lau, Y. Y. Jiang, K. C. Tee, L. Chan, S. W. Lim and A. Trigg, Jpn. J. Appl. Phys., vol. 43, 2004, p. 1869.
[52] Y. Taur and T. J. Watson, “The incredible shrinking transistors,” IEEE Spectrum, vol. 36, 1999, p. 25.
[53] C-H Choi, K-Y Nam, Z. Yu and R. W. Dutton, IEEE Trans. Electron Devices vol. 48, 2001, p. 2823.
[54] A. Yassine and R. S. Hijab, Integrated Reliability Workshop Final Report 1997, p. 56.
[55] Hu C. BSIM4.3.0 MOSFET Model user’s manual 2003, p. 4.
[56] O. Tonomura, Y. Shimamoto, S. Saito, K. Torii, M. Hiratani, and J. Yugami, IEEE Trans. Electron Devices, vol. 51, 2004, p. 1653.
[57] C. G. Sodini, P. K. Ku, and L. Moll, IEEE Trans. Electron Devices, vol. 31, 1983, p. 1386.
[58] F. Fang and X. Fowler, J. Appl. Phys., vol. 41, 1969, p. 1825.
[59] L. Ge, J. G. Fossum, and B. Liu, IEEE Trans. Electron Devices, vol. 47, 2001, p. 2074.
[60] D. K. Schroder, “Semiconductor Material and Device Characterization,” John Wiley & Sons, Inc., 1998, p. 228.
[61] F. H. De La Moneda, H. N. Kotecha, and M. Shatzkes, IEEE Electron Device Lett., vol. 3, 1982, p. 10.
[62] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge, U.K., Cambridge Univ. Press, 1998, p. 158.
[63] L. Ge, J. G. Fossum, and B. Liu, IEEE Trans. Electron Devices, vol. 47, 2001, p. 2074.
[64] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge, U.K., Cambridge Univ. Press, 1998, p. 117.
[65] F. Fang and X. Fowler, J. Appl. Phys., vol. 41, 1969, p. 1825.
[66] C. G. Sodini, P. K. Ku, and L. Moll, IEEE Trans. Electron Devices, vol. 31, 1983, p. 1386.
[67] Y. Taur, IEEE Trans. Electron Devices, vol. 47, 2000, p. 160.
[68] Y. C. Sun, M. R. Wordeman and S. E. Laux, IEEE Trans. Electron Devices, vol. 33, 1986, p. 1556.
[69] G. Hu, C. Chang, and Y. Chia, IEEE Trans. Electron Devices, vol. 34, 1987, p. 2469.
[70] J. G., J. Chern, P. Chang, R. F. Motta, and N. Godinho, IEEE Electron Device Lett., vol. 1, 1980, p. 170.
[71] Paul I. Suciu, Ralph L. Johnston, IEEE Trans. Electron Dev., vol. 27, 1980, pp. 1846.
[72] G. Merckel, J. Borell, and N. Z. Cupcea, IEEE Trans. ElectronDev., vol. 19, 1972, p. 681-690.
Published papers
1. Chun-Chia Yeh, Chun-Feng Neih, Yen-Yu Chen, and Jeng Gong, “Simple and Accurate Method of Modeling Gate Current of N-Channel Metal-Oxide-Semiconductor Field-Effect Transistor,” Jpn, J. Appl. Phys. vol. 46, No. 8A, 2007, p. 5133.
2. Chun-Chia Yeh, Chun-Feng Neih, Yen-Yu Chen, and Jeng Gong, “The Extraction of the Effective Channel Length and Series Resistance of a 65 nm Metal-Oxide-Semiconductor Field-Effect Transistor,” accept by Electronics Letters in 2007.
3. Chun-Chia Yeh, Chun-Feng Neih, Yen-Yu Chen, and Jeng Gong, “Temperature Effect of Metal-Oxide-Semiconductor Field-Effect-Transistors' Gate Current Evaluated with the Mask Dimensions,” accept by Solid State Electronics in 2007.
4. Chun-Chia Yeh, Chun-Feng Neih, Yen-Yu Chen, and Jeng Gong, “Modeling the MOSFETs' Gate Current with the Drawn Dimensions,” IEEE 2006 8th International Conference on Solid-State3 and Integrated Circuit Technology Electronic Version Proceedings, 2006, p. 1287