研究生: |
呂吉祥 Chi-Hsiang Lu |
---|---|
論文名稱: |
質子交換膜燃料電池操作參數對電池性能影響之模擬分析 Simulation of proton exchange membrane fuel cell with CFDRC-ACE+ Computational fluid dynamic code |
指導教授: |
李敏
Min Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 質子交換膜燃料電池 、數值模擬 、靈敏度分析 、膜內水含量 |
外文關鍵詞: | PEMFC, CFD, Sensitivity study, water content of membrane |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質子交換膜燃料電池(Proton Exchange Membrane Fuel cell‚ PEMFC)的水熱管理一直是個相當困擾的問題,如何保持薄膜內含水量以及均勻溫度分佈是電池正常運轉的重要關鍵因素。電池陰極側所生成的液態水量、生成位置及分佈,會直接影響電池的效能;產生過量的水,可能導致陰極氣體擴散層水氾濫,阻礙氣體的輸送;若薄膜水分不足,則氫離子就難以通過薄膜抵達陰極觸媒層來產生反應。溫度的分佈,也是一項相當重要的因素,當溫度過高,可能就會導致電池某區域發生損壞。所以可經由數值模擬的方式,來改善質子交換膜燃料電池的水熱管理,以提高其效能。
本研究是利用CFDRC數值流力分析轉換來探討質子交換膜燃料電池,分析在不同氣體濃度、增濕程度、操作溫度、陰陽極壓力差等條件對於薄膜內水含量、電流密度分佈的影響,進而評估燃料電池的性能。依照燃料電池之物理及化學現象,建立數學模式,進而模擬PEMFC的流場分佈。本研究的主要目的是要驗證CFDRC流力分析軟體,用於PEMFC水熱管理模擬的能力,其次,對各參數做靈敏度分析,使燃料電池的性能達到最佳化。
本文模擬結果顯示:使用乾空氣及純氧時,陽極入口處附近會有乾化現象發生,所以必須作增濕處理;使用純氧為氧化劑時,反應氣體濃度提高,能產生很高的極限電流密度約1.81 A/cm2,若為反向流可提高至1.85 A/cm2。增濕氣體方面,陽極相對溼度越高,性能曲線越佳;但陰極相對溼度降低,會減少低電流密度區的電流密度,但會增加高電流密度區的電流密度,前者與薄膜水含量降低有關,後者與氣體濃度的提升有關。操作溫度方面,提高溫度有利於增加電化學反應速率,但高分子薄膜的耐溫程度有限,且要考慮水含量問題,結果顯示以操作溫度在353K性能最佳,溫度提高到373K性能反而會降低。操作壓力方面,提高壓力可明顯提升電池的性能,且以陰極端加壓的效果會比陽極加壓的效果好,因為加壓氣體會使得觸媒層界面濃度提高,且可提高兩電極端的濃度梯度,使得薄膜水含量更為均勻,也不易出現氧氣過早被反應消耗完。因此,提高氣體壓力能夠減少活性與濃度極化損失。
Water and heat management are important issues in the design and analysis of proton exchange membrane fuel cell (PEMFC). In the present study, a computational fluid dynamic (CFD) code, CFDRC-ACE+, is used to simulate the hydrodynamic behavior of PEMFC. A single cell three dimensional model of PEMFC is built. The input values of physical and chemical parameters are determined based on the results of literature survey. The polarization curve as predicted in the present study is very closed to the experimental results and the simulated results in the related literatures . Sensitivity studies are preformed to identify the impact of major operating parameters on the polarization curve.
The results of sensitivity studies show that the water content of membrane near the channel entrance will be significant lower when dry air or pure oxygen is used in the cathode flow channel. To humidify the cathode gas flow can improve the performance of fuel cell in low current density (high voltage) portion of polarization curve. However, If has adverse effect in the high current density (low voltage) portion of polarization curve. The performance in the high current density portion is better when the gas flow in anode channel and cathode channel is in reversed direction. The performance of PEMFC can also significantly improved by increasing the pressure of cathode flow channel and by incorporating forced convection.
The condensation of water vapor in the flow channel and porous media is not considered in the present study. The CFDRC-ACE+ code has the capability to consider the phenomenon. However, the numerical scheme of the code is extremely unstable when the phenomenon is considered.
1. J. Larminie and A. Dicks, “Fuel Cell Systems Explained”, Second Edition, John Wiley.(2003)
2. Gregor Hoogers“Fuel cell technology handbook”,CRC Press.(2003)
3. J.J.Baschuk, Xianguo Li “A general formulation for a mathematical PEM fuel cell model” , Journal of power sources 142,134-153. (2004)
4. Fuel Cell Handbook Fifth Edition.(2000)
5. S. Mazumder, J. V. cole, ”Rigorous three-dimensional mathematical modeling of proton exchange membrane fuel cells, Part 1: model predictions without liquid water transport” , CFD Research Corporation, Humtsville, AL. 35805, USA. (2002)
6. S. Mazumder, J. V. cole, ”Rigorous three-dimensional mathematical modeling of proton exchange membrane fuel cells, Part 2: model predictions with liquid water transport” , CFD Research Corporation, Humtsville, AL. 35805, USA. (2002)
7. Springer, T. E., Zawodzinski, T. A., and Gottesfeld, S., ‘‘Polymer Electrolyte Fuel Cell Model’’ , J. Electrochem. Soc., 138(8), pp. 2334–2342. (1991)
8. Springer, T. E., Wilson, M. S., and Gottesfeld, S., ‘‘Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells’’ , J. Electrochem. Soc., 140(12), pp. 3513–3526. (1993)
9. Bernardi, D.M., and Verbrugge, M.W.,‘‘Mathematical Model of a Gas-Diffusion Electrode Bonded to a Polymer Electrolyte’’ , AIChE J., 37 (8), pp.1151–1163. (1991)
10. Bernardi, D. M., and Verbrugge, M. W., ‘‘A Mathematical Model of the Solid Polymer Electrolyte Fuel Cell’’ , J. Electrochem. Soc., 139(9), pp. 2477–2491. (1992)
11. Fuller, T. F., and Newman, J., ‘‘Water and Thermal Management in Solid Polymer Electrolyte Fuel Cells’’ , J. Electrochem. Soc., 140(5), pp.1218–1225
. (1993)
12. Nguyen, T. V., and White, R. E., ‘‘A Water and Heat Management Model for Proton Exchange Membrane Fuel Cells’’ J. Electrochem. Soc., 140(8), pp.2178–
2186. (1993)
13. Weisbrod K.R., Grot S.A., and Vanderborgh N.E., “Through the Electrode Model of a Proton Exchange Membrane Fuel Cells”, Proc. Electrochemical Soc. Meeting, Chicago, IL, Vol. 95-23, pp. 152-166. (1990)
14. Watanabe, M., et al. : J. Electrochem. Soc., 140-11, 3190-3193(1993)
15. Voss, H.H., Wilkinson, D.P., Pickup, P.G., Johnson, M.C.and Basura, V., “Anode water removal: a water management and diagnostic technique for solid polymer fuel cells,” Electrochim. Acta, Vol. 40, pp. 321-328. (1995)
16. Yi, J. S., and Nguyen, T. V, ‘‘An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells,’’ J. Electrochem. Soc., 145(4), pp. 1149–1159. (1998)
17. Gurau, V., Liu, H., and Kakac, S., ‘‘Two-Dimensional Model for Proton
Exchange Membrane Fuel Cells,’’ AIChE J., 44(11), pp. 2410–2422. (1998)
18. W. K. Lee, Van Zee J.W. Shimpalee and S. Dutta “ Effect of Humidity on PEM Fuel Cell Performance Part Ⅱ- Numerical simulation” , pp.259-366. (1998)
19. T. Okada, G. Xie, and M. Meeg, “Simulation for water management in membranes for polymer electrolyte fuel cells,” Electrochimica Acta, vol. 43, no. 14-15, pp. 2141–2155. (1998).
20. Yi, J. S., and Nguyen, T. V, ‘‘Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors,’’ J. Electrochem. Soc., 146(1), pp. 38–45. (1999)
21. Singh, D., Lu, D. M., and Djilali, N., ‘‘A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells,’’ Int. J. Eng. Sci.,37(4), pp. 431–452. (1999)
22. Um, S., Wang, C. Y., and Chen, K. S.,‘‘Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,’’ J. Electrochem. Soc.,
147(12), pp. 4485–4493. (2000)
23. Ticianelli, E.A., Derouin, C.R., and Srinivasan, S.; J. Electroanal. Chem., Vol. 251, pp. 275-295. (1988).
24. Ticianelli, E.A., Derouin, C.R., Redondo, A., and Srinivasan, S.; Journal of the Electrochemical Society, Vol. 135, pp. 2209-2214. (1988).
25. S. Dutta, S. Shimpalee, and J. W. Van Zee. “Three-dimensional numerical simulation of straight channel PEM fuel cells,” Journal of Applied Electrochem
-istry, 30, 135-146. (2000).
26. Shimpalee, S., and Dutta, S., “Numerical Prediction of Temperature Distribution in PEM Fuel Cells,” Numer. Heat Transfer, Part A, 38(2), pp.111–128. (2000)
27. Dutta, S., Shimpalee, S., and Van Zee, J. W., ‘‘Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells,’’ J. Appl. Electrochem.,30, pp. 135–146. (2000)
28. Dutta, S., Shimpalee, S., and Van Zee, J. W. ‘‘Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell,’’Int. J. Heat Mass Transfer, 44(11), pp. 2029–2042.(2001)
29. Berning, T., Lu, D. M., and Djilali, N.,‘‘Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,’’ J. Power Sources, 106(1–2), pp. 284–294. (2002)
30. Djilali, N. and D.M. Lu, "Influence of Heat Transfer on Gas and Water Transport in Fuel Cells," Int. J. Thermal Science 41 pp. 29-40. (2002)
31. Um, S., and Wang, C. Y., "Three-Dimensional Analysis of Transport and Reaction in Proton Exchange Membrane Fuel Cells," Proceedings of the ASME Heat Transfer Division 2000, HTD-Vol. 366-1, pp. 19–25. (2000)
32. C.Y. Wang, Z.H. Wang and Y. Pan, "Two-phase transport in proton exchange membrane fuel cells," (1999)
33. Z.H. Wang, C. Y. Wang and K. S. Chen, "Two phase flow and transport in the air cathode of proton exchange membrane fuel cells," J. Power Sources, Vol. 94 (1), pp. 40-50 (2001)
34. J. Baschuk and X. Li, J. Power Sources, 86, 181. (2000)
35. He, W., Yi, J. S., and Nguyen, T. V., ‘‘Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields,’’ AIChE J.,46(10), pp. 2053–2064. (2000)
36. L. You and H. Liu, “ Two-phase flow and transport model for the cathode of PEM fuel cells" Int J Heat Mass Transfer 45, pp. 2277–2287. (2002)
37. Stockie, J. M., Promislow, K. and Wetton, B. R., “A Finite Volume Method for Multicomponent Gas Transport in a Porous Fuel Cell Electrode,” Int. J. Numer. Meth. Fluids, 41:577–599. (2003).
38. U. Pasaogullari, C.-Y. Wang, and K. S. Chen, “Liquid water transport in polymer electrolyte fuel cells with multi-layer diffusion media”, in Proceedings of IMECE04, paper #IMECE2004-59283 (2004).
39. CFD-ACE(U), CFD Research Corporation, Alabama, USA (2003)
40. http://www.cfdrc.com/corporate/
41. http://www.mscsoftware.com.au/products/software/cfdrc/index.htm
42. C. Y. Wang and P. Cheng, Adv. Heat Transfer, 30, 93 (1997).
43. V. Gurau, H. Liu, and S. Kakac, AIChE J., 44, 2410 (1998).
44. G. Dagan, Flow and Transport in Porous Formations, Springer-Verlag, Berlin (1989).
45. R. B. Bird, W. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York (1960).
46. Dagan, G., Flow and Transport in Porous Formations, Springer, Berlin (1989)
47. Kaviany, M., Principles of Heat Transfer in Porous Media, second ed. Springer, New York (1995)
48. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, Wiley, New York. (1960)
49. Chapman, S, and Cowling, T G, “The Mathematical Theory of Non-Uniform Gases”, third ed., Cambridge University Press, Cambridge (1990)
50. Newman, J.S., Electrochemical Systems, Prentice-Hall. (1973).
51. C. Y. Wang and P. Cheng, Adv. Heat Transfer, 30, 93 (1997)
52. Z. H. Wang, C. Y. Wang, and K. S. Chen, ”Two-phase flow and transport in the air cathode of proton exchange membrane fuel cell”,. J of Power Sources, 94, 40 (2001)
53. He, J. S. Yi, and T. V. Nguyen, AIChE J., 46, 2053 (2000).
54. D. Natarajan and T. V. Nguyen, J. Electrochem. Soc., 148, A1324. (2001)
55. S. V. Patankar, “Numerical heat transfer and fluid flow”, Hemisphere ,New York,(1980).