簡易檢索 / 詳目顯示

研究生: 李佳容
Chia-Jung Lee
論文名稱: 數位化X光照像之輻射劑量與影像品質的最優化研究
Optimization of Radiation Dose and Image Quality for Digital X-ray Radiography
指導教授: 董傳中
Chuan-Jong Tung
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 57
中文關鍵詞: 最優化分析有效劑量影像品質技術因子
外文關鍵詞: optimization analysis, effective dose, image quality, technical factors
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在醫療曝露品質保證的提倡之下,英國國家放射防護委員會(National Radiological Protection Board, NRPB)的研究報告,指出應將受檢者接受X光檢查時所受之劑量,列為品質管制項目之ㄧ,以保障受檢者能夠在較低的輻射劑量下,獲得最佳的放射診斷影像。
    基於此概念,本研究提出輻射劑量與影像品質最優化分析之方法。此分析方法以實際受檢者為對象,配合各家醫院之胸部後前向X光照像(chest PA view)標準程序,以入射表面劑量(entrance surface dose, ESD)及劑量面積乘積(dose-area product, DAP)為劑量指標,評估有效劑量(effective dose)。而影像品質指標方面,則以歐洲委員會(European Commission, EC)所公佈的胸部後前向X光照像之影像評分標準為依據,由放射專科醫師進行評分,並以此評分為依據,作為一主觀之量化標準。
    經由本分析方法之實驗結果證明,在達成相同影像品質的條件之下,高管電壓與適當之照野面積,可使得受檢者得到較小之有效劑量。由本研究之分析結果可知,在採用高管電壓,並依受檢者之體型調整照野大小之下,配合對於光照野與自動曝露控制(automatic exposure control, AEC)裝置之校正與品質控制之加強,即可在較低之有效劑量下,獲得最佳之影像品質。若能廣泛的應用此最優化之X光照像方法至各醫院,則可大幅提升其放射診斷品質。


    In a report of the British National Radiological Protection Board (NRPB), radiation monitoring has been recommended as an essential item for the quality assurance program in diagnostic radiology.
    Our research objectives are to optimize the digital radiography by looking for the most suitable technical factors, obtaining the balance between image quality and radiation dose, and analyzing the optimization conditions. The entrance surface dose and dose-area product were used as dose indices to determine effective doses. Image quality was obtained subjectively. Three radiologists scored the images according to the image criteria recommended in the European guidelines, EUR 16260. The optimization analysis was then applied to determine the optimized technical factors for the chest PA radiography in a given hospital.
    Our results indicate that using high tube potential and appropriate field size can significantly reduce the effective dose, yet achieving similar image quality in chest PA examination. Besides, to improve the quality of the diagnostic radiology, the calibration of light field and automatic exposure control device should be performed periodically.

    目錄 圖目錄 表目錄 第一章 序論 1.1 研究目的 1.2 實驗架構 第二章 材料與方法 2.1 X光數位影像系統 2.1.1 X光數位影像系統簡介 2.1.2 電腦放射影像系統 2.1.3 直接放射影像系統 2.2 劑量學 2.2.1 劑量指標:入射表面劑量、劑量面積乘積 2.2.2 器官等價劑量與有效劑量 2.2.3 有效劑量轉換因子 2.3 劑量量測儀 2.3.1 入射表面劑量測量儀:熱發光劑量計 2.3.2 劑量面積乘積測量儀:劑量面積乘積儀 2.4 影像評估方法 2.5 實驗步驟與方法 2.5.1 臨床劑量監測 2.5.2 受檢者篩選 2.6 最優化之X光照像 2.6.1 輻射劑量與技術因子的關係 2.6.2 影像品質與技術因子的關係 第三章 結果與討論 3.1 各醫院之技術條件 3.2 劑量指標之結果 3.2.1 入射表面劑量分佈 3.2.2 劑量面積乘積分佈 3.3 最優化分析 3.3.1 有效劑量與影像品質 3.3.2 最優化指標 第四章 結論 第五章 參考文獻

    [1] “National protocol for patient dose measurements in diagnostic radiology”, Dosimetry Working Party of the Institute of Physical Sciences in Medicine, NRPB, 1992.
    [2] 行政院原子能委員會,游離輻射防護法,第二條。
    [3] 行政院原子能委員會,游離輻射防護法,第十七條。
    [4] D. Hart and B. F. Wall, “Radiation exposure of the UK population from medical and dental x-ray examinations”, NRPB Publication W4, 2002.
    [5] “European guidelines on quality criteria for diagnostic radiographic images”, European Commission, EUR 16260 EN, 1996.
    [6] Harrell G. Chotas, “Principles of digital radiography with large-area, electronically readable detectors: A review of the basic”, Radiology, Vol. 210, No. 3, pp. 595-599, 1999.
    [7] Charles E. Willis, “Strategies for dose reduction in ordinary radiographic examinations using CR and DR.”, Pediatr. Radiol., 2004.
    [8] Richard R. Carlton, “Principles of radiographic imageing: An art and a science”, 3rd Ed., Tomson Delmar Learing.
    [9] D. Hart, D. G. Jones and B. F. Wall, “Estimation of effective dose in diagnostic radiology from entrance surface dose and dose-area product measurements”, NRPB-R262, 1994.
    [10] “Diagnostic reference levels in medical imaging”, DRAFT ICRP Committee 3, ICRP, 2001.
    [11] “1990 recommendations of the International Commission on Radiological Protection”, Oxford: Pergamon Press, ICRP Publication 60, 1991.
    [12] S. Rannikko, “Computing patient doses of X-ray examinations using patient size- and sex-adjustable phantom”, The British Journal of Radiology, Vol. 170, Issue 835, pp. 708-718, 1997.
    [13] J. Lampinen, “Calculating patient specific doses in x-ray diagnostics and from radiopharmaceuticals”, Report Series in Physics, HU-P-D82, University of Helsinki, Finland, 2000.
    [14] http://media.justsports.net.tw/spo_demo/library/library-1.aspx?No=127,行政院體育委員會網站,體育教學區網頁。
    [15] http://www.cdc.gov/nccdphp/dnpa/bmi/calc-bmi.htm, Centers for Disease Control and Prevention.
    [16] http://nhlbisupport.com/bmi/, National Institutes of Health.
    [17] Anthony B. Wolbarst,“Optimal technical factors”, Chapter 31, Physics of Radiology, 2nd Ed, Medical Physics Publishing.
    [18] “Dose Management in Digital Radiology”, ICRP TG46, ICRP, 2003.
    [19] H. Geijer, “Image quality vs. radiation dose for a flat-panel amorphous silicon detector: a phantom”, Eur. Radiol., Vol. 11, No. 3, pp. 1704-1709, 2001.
    [20] W. P. Hosch, “Radiation dose reduction in chest radiography using a flat-panel amorphous silicon detector”, Clinical Radiology, Vol. 57, No. 10, pp.902-907, 2002.
    [21] C. Fink, “Clinical comparative study with a large-area amorphous silicon flat-panel detector: Image quality and visibility of anatomic structures on chest radiography”, AJR, Vol. 178, No. 2, pp. 481-486, 2002.
    [22] M. Volk, “Dose reduction in skeletal and chest radiography using a large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide: technical background, basic image quality parameters, and review of the literature”, Eur. Radiol., Vol. 14, No. 5, pp. 827-834, 2004.
    [23] P. Gron, “A Nordic survey of patient doses in diagnostic radiography”, Eur. Radio., Vol. 10, No. 12, pp. 1988-1992, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE