簡易檢索 / 詳目顯示

研究生: 馮致華
Feng, Chih-Hua
論文名稱: 新型 CMOS-MEMS Z軸加速度計之研發
A novel development of CMOS-MEMS Z-axis Accelerometer
指導教授: 方維倫
Fang, Weileun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 79
中文關鍵詞: 加速度計CMOS-MEMS
外文關鍵詞: accelerometer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來微機電系統 MEMS 漸成為世界的重要產業科技之ㄧ,其體積小、低耗能的優點,使 MEMS 產品應用愈來愈普遍。從 ADI 加速度計到德儀的數位微面鏡(DMD)運用在投影機,使得 MEMS 的元件更受到重視。MEMS 的製程無法標準化,因而需針對不同元件設計出不同的製程,如此會造成成本較高與製造複雜。若利用現有 IC 標準製程與高良率,將 MEMS 與 IC 的技術整合將會使 MEMS 元件更具有競爭力,此即為 CMOS-MEMS 技術。本研究採用 TSMC 0.35 μm 2P4M 製程進行加速度計設計,此加速度計與其他 CMOS-MEMS 加速度計最大差異點在於不採用感測臂作為感測架構,而是將質量塊也作為上電極,如此可減少元件面積進而降低成本。


    目錄 中文摘要......................................I 英文摘要.....................................II 目錄........................................III 圖目錄........................................V 表目錄.......................................IX 第一章 前言.................................1 1-1 研究動機.................................1 1-2 文獻回顧.................................2 1-3 微機電出平面加速度計.....................3 1-4 CMOS-MEMS 後製程分類.....................8 1-5 研究目標.................................10 第二章 元件設計與模擬分析....................20 2-1 加速度計基本原理.........................20 2-2 機械與感測結構之設計................21 2-2.1 質量塊.................................22 2-2.2 彈簧...................................23 2-2.3 感測臂.................................23 2-3 金屬濕蝕刻結構設計..................25 2-4 加速度計之設計......................26 2-5 相關係數 ............................27 2-6 元件性能增益........................27 2-7 機械雜訊評估........................28 2-8 加速度計模擬........................29 第三章 製程與實驗 ............................40 3-1 TSMC 0.35μm 2P4M CMOS 製程概述......40 3-2 CMOS-MEMS 引洞的介紹................41 3-3 濕蝕刻製程..........................42 3-4 出平面加速度計之後製程..............43 第四章 元件特性量測與比較....................58 4-1 結構特性量測與比較..................58 4-2 元件特性量測........................58 4-3 結果討論 ............................62 第五章 結論與未來工作........................72 參考文獻......................................74

    參考文獻
    [1]H. Baltes, O. Brand, A. Hierlemann, D Lange and C. Hagleitner, “CMOS MEMS – Present and Future,” the 15th IEEE international conference on Micro Electro Mechanical Sstem, pp 459-466, 2002.
    [2]F. Pourahamdi, L. Christel, and K. E. Petersen, “Silicon accelerometer with new thermal self-test mechanism,” Technical Digest, IEEE International Solid State Sensors and Actuators Workshop, Hilton Head Island, SC, June, pp 22-25, 1992.
    [3]H. Seidel, H. Riedel, R. Kolbeck, G. Muck, W. Kupke, and M. KoMiger, “Capacitive silicon accelerometer with highly symmetrical design,” Sensors and Actuators A, pp 312-315, 1990.
    [4]F. Rudolf, A. Jornod, J. Bergqvist, and H. Leuthold, “Precision accelerometers with μg resolution,” Sensors and Actuators A, pp 297-302, 1990.
    [5]E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree-offreedom response,” Transducers ’91, San Francisco, pp 97 -100, 1991.
    [6]N. Yazdi, and K. Najafi, “An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process,” Journal of Microelectromechanical System, 9, pp 544-550, 2000.
    [7]T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma, and M. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities,” Journal of Micromechanics and Microengineering, pp 431-435, 1996.
    [8]L. C. Spangler, and C. J. Kemp, “ISAAC: integrate silicon automotive accelerometer,” Sensors and Actuators A, pp 523-529, 1996.
    [9]G. Li, and A. A. Tseng, “Low Stress Packaging of a Micromachined Accelerometer,” IEEE Transactions on Electronics Packaging Manufacturing, 24, pp 18-25, 2001.
    [10]E. Belloy, A. Sayah, and M. A. M. Gijs, “Micromachining of glass inertial sensors,” Journal of Microelectromechanical System, 11, pp 85-90, 2002.
    [11]F. Goodenough, “Airbags boom when IC accelerometer sees 50g,” Electronic Design, 39, 1991.
    [12]K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R.G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low g application”, Sensor and Actuator A, 54, pp 472-476, 1966.
    [13]H. Xie, and G.K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” IEEE MEMS’ 2000, Miyazaki, Japan, pp 496-501.
    [14]Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida, “Three axis SOI capacitive accelerometer with PLL C-V converter,” Sensors and Actuators A, pp 77-85, 1999.
    [15]K. Ishihara, C.-F. Yung, A.A. Ayon, and M.A. Schmidt, “An inertial sensor technology using DRIE and wafer bonding with interconnecting capability,” Journal of Microelectromechanical System, pp 403-408, 1999.
    [16]J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, “Theory, technology and assembly of a highly symmetrical capacitive tri-axial accelerometer,” IEEE MEMS’97, Nagoya, Japan, pp 31-36.
    [17]W. Weigold, K. Najafi, and S. W. Pang, “Design and fabrication of submicrometer, single crystal Si accelerometer,” Journal of Microelectromechanical Systems, pp 518-614, 2001.
    [18]B. Puers and W. Sansen, “A new uniaxial accelerometer in silicon based on the piezojunction effect,” IEEE Transactions on Electronic Devices, pp 764-770, 1988.
    [19]P. Scheeper, J. O. Gullov, and M. Kofoed, “A piezoelectric triaxial accelerometer,” Journal of Micromechanics and Microengineering, pp 131-133, 1996.
    [20]L.M. Roylance and J.B. Angell, “A batch-fabricated silicon accelerometer,” IEEE Transactions on Electronic Devices, pp 1911-1917, 1979.
    [21]A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N.I. Maluf, and T. W. Kenny, “A high- performance planar piezoresistive accelerometer,” Journal of Microelectromechanical Systems, pp 58-66, 2000.
    [22]P. M. Zavaracky, B. McClelland, K. Warner, J. Wang, F. Hartley, and B. Dolgin, “Design and process considerations for a tunneling tip accelerometer,” Journal of Micromechanics and Microengineering, 6, pp 352-358, 1996.
    [23]C.-H. Liu and T. W. Kenny, “A High-Precision, Wide-Bandwidth Micromachined Tunneling Accelerometer,” Journal of Microelectromechanical Systems, pp 425-433, 2001.
    [24]T. Storgaard-Larsen, S. Bouwstra, and O. Leistiko, “Opto-Mechanical accelerometer based on strain sensing by a bragg grating in a planar waveguide,” Sensors and Actuators A, pp 25-32,1996.
    [25]U. A. Dauderstadt, P. D. Vries, R. Hiratsuka, “Silicon accelerometer based on thermopiles, ”sensors and Actuators, 103, pp 201-204, 1995.
    [26]Dao, R., et al.,“Convective accelerometer and inclinometer, ”US Patents, 1995.
    [27]K. E. Petersen, A.S. Hartel, and N.F. Raley, “Micromechanical accelerometer integrated with MOS detection circuitry,” IEEE-Transactions on Electron Devices, pp 23-27, 1982.
    [28]J. C. Cole, “A new sense element technology for accelerometer subsystems,” International Conference on Solid-State Sensors and Actuators, 1991.
    [29] A. Selvakumar and K. Najafi, “Vertical comb array microactuators,”Microelectromechanical Systems, pp 440-449, 2003.
    [30]L. P Wang, A. Richard, Jr. Wolf, Y. Wang, K. D. Ken, L. Zou, J. D. Robert, “Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers,” Microelectromechanical Systems, pp 433-439, 2003.
    [31]A. Partridge, J.K. Reynolds, B.W. Chui, E. M. Chow, A. M. Fitzgerald,L. Zhang, N. I. Maluf, T. W. Kenny,“A high-performance planar piezoresistive accelerometer,” Microelectromechanical Systems, pp 58-66, 2000.
    [32]N. Yazdi and K. Najafi “An all-silicon single-wafer fabrication technology for precision microaccelerometers,” Transducers 97’.
    [33]T. Tsuchiya , H. Funabashi “A z-axis differential capacitive SOI accelerometer with vertical comb electrodes,” Sensors and Actuators A, pp 378-383, 2004.
    [34]H. Lakdawala and G.K. Fedder, Temperature Stabilization of CMOS Capacitive accelerometers”, J. Micromech. Microeng., 14, pp 559-566, 2004.
    [35]Y. J. Huang, T. L. Chang, H. P. Chou,” Study of symmetric microstructures for CMOS multilayer residual stress,” Sensors and Actuators , pp 237–242, 2009.
    [36]H. K. Xie , G.K. Fedder, Z. Pan,” Design and Fabrication of an integrated CMOS MEMS 3-axis accelerometer,”Nanotech, 2 , 2003.
    [37]J.M. Bustillo, G. K. Fedder, C.T. Nguyen, R.T. Howe, “Process technology for the modular integration of CMOS and polysilicon microstructures.” Microsys. Technol, pp130–141, 1994.
    [38]http://www.sandia.gov/
    [39]http://www.analog.com/
    [40]S. Ghosh and M. Bayoumi, “On Integrated CMOS-MEMS System-on-Chip”, The 3rd International IEEE-NEWCAS Conference, pp 31-34, 2005.
    [41]A. Manut and M. I. Syono, “Effects of Mechanical Geometries on Resonance Sensitivity of MEMS Out-of-Plane Accelerometer,” ICSE, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE