研究生: |
王皓宇 Wang, Hao-yu |
---|---|
論文名稱: |
在外力負載下圓柱形金屬共振腔之高頻電磁場共振頻率與其機械材料特性之相關性研究 The Effects of Material Mechanical Properties on the Resonance Frequency Shift of a Loaded Metallic Circular Cylindrical Cavity |
指導教授: |
葉孟考
Yeh, Meng-Kao |
口試委員: |
蔣長榮
蔡佳霖 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 圓柱薄殼 、共振腔 、有限單元分析 、材料特性 、低溫 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主旨在研究彈性圓柱形薄殼管件的變形問題,當圓柱薄殼受側向與軸向壓力時,不同的長度、厚度與半徑比均會影響管件本身的變形量,因此藉由改變圓柱尺寸與外加負載的情形下觀察其半徑變化與圓柱尺寸的關係,並根據改變不同方向負載所造成的管件變形來反求材料的楊氏模數與普松比。但在有限外力下,管件的變形量在微米等級,不易以常規機械方式量測;由於中空管件本身為一共振腔結構,故可利用共振腔在不同環境溫度及施予不同外加負載時,其電磁場共振頻率會隨腔體變形而飄移的現象反推材料的機械特性;並可利用內部氣體含量變化所造成的共振頻率飄移反推其氣體介電常數的變異。模擬方面使用有限元素分析軟體ANSYS建立模型,結合結構變形與電磁場場域分析,利用共振腔之 模態的電磁場,由腔體變形前後共振頻率的飄移量與腔體變形量進行討論,並用古典板殼理論模型與Maxwell 方程式的解析解以驗證其準確性。但古典板殼理論只能探討無限長管件的變形量,而分析軟體則可進行有限長度管件的模擬,與實驗結果相互驗證,結果誤差值皆在可容許範圍內,並證明可由此研究方法建立金屬材料的楊氏模數、普松比及熱膨脹係數的新式量測方法。並可進一步應用到低溫下金屬材料之機械性質量測與氣體介電常數量測。
The circular cylindrical shell is a popular structure in engineering applications. As being evacuated, the external pressure deforms this structure with limited displacements. For a metallic cylindrical circular cylindrical shell, the high strength leads to a tiny deformation and thus difficult to measure with the traditional methods. But a metallic circular cylindrical shell is a perfect cavity in which the discrete resonant electromagnetic fields can be excited with the proper input microwaves. When the cavity deformed, some of its specified resonance frequencies of the electromagnetic fields also shifted. Thanks to the high resolution of the modern network analyzers, the frequency shift due to a small deformation can be measured. Thereafter the deformation can be deduced from the resonance frequency shift. Since the structure deformation are dominated by three material properties: the Young’s modulus, the Poison’s ratio and the coefficient of the thermal expansion, it is thus practical to calculate these properties by measuring the frequency shifts of the cavity structure under various loading conditions. The variation of the permittivity of the gas inside the cavity, which dominates the resonant frequencies, must be taken into consideration when it is not in vacuum condition. A measurement process to determine the permittivity of the gas under different pressure condition was also established in this study. Theoretical formulas to link the structure deformation and the resonance frequency of a specified mode were established, while the finite element code ANSYS was adopted for 3-D numerical calculations. Together with the tests and measurements, a new method to measure the mechanical properties of metals is proposed and proved.
1.L.G. Brazier, “On the flexure of thin cylindrical shells and other "thin" sections,” Proc. R. Soc. Serier A CXVI, pp 104-114, 1926.
2.I.F. Ozkan and M.E. Mohared, “Plastic design of steel pipe sections under general stress resultant combinations,” 4th Structural Specialty Conference of the Canadian Society for Civil Engineering Montreal CD-Proceedings, Quebec, Canada, pp 1-10, 2002.
3.H Li, H Yang and M Zhan, “A study on plastic wrinkling in thin-walled tube bending via an energy-based wrinkling prediction model,” Modelling Simul. Mater. Sci. Eng, Vol. 17, pp 1-33, 2009.
4.D. Haixu, ” Strength and stability of double cylindrical shell structure subjected to hydrostatic external pressure—Part I: strength,” Marine Structures, Vol. 16, pp. 373-395, 2003
5.F.L. Zhan, M.R. Li, J.L. Yang and W.B. Huang, “The finite deformation theory and finite element formulation of plate and shell,” Acta Mechanica Sinica, Vol. 22, pp. 343-350, 2001
6.E. Poursaeidi, G.H. Rahimi and A.H. Vafai, “Plastic buckling of cylindrical shells with cutouts,” Asian Journal of Civil Engineering, Vol. 5, pp 191-207, 2004.
7.M. Koc, “Investigation of the effect of loading path and variation in material properties on robusyness of the tube hydroforming process,” Journal of Matrials Processing Technology, Vol.133, pp.276-281, 2003.
8.M.K. Yeh, M.C. Lin, W.T. Wu, “Bending buckling of an elastoplastic cylindrical shell with a cutout,” Engineering Structures, Vol. 21, pp. 996-1005, 1999
9.E.V. Pittner and N.J. Hoff, “Creep buckling of simply supported moderately thin circular cylindrical shells,“ Acta Mechanica, Vol. 8, pp. 116-125, 1969.
10.G.T. Jin, “Buckling of thin shells: recent advances and trends,” American Society of Mechanical Engineers, Vol. 49, pp. 263-274, 1996.
11.S.P. Timoshenko and S.W. Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Inc., 1970.
12.F.R. Elder, A.M. Gurewitsch, R.V. Langmuir and H.C. Pollock, “Radiation from Electrons in a Synchrotron”, Physical Review, Vol. 71, pp. 829–830, 1947.
13.N. Akdogan, “Origin of Ferromagnetism in Oxide-Based Diluted Magnetic Semiconductors”, Ruhr-Universitat Bochum Bochum, Germany, 2008.
14.H. Padamsee, “The science and technology of superconducting cavities for accelerators,” Superconducting Science and Technology, Vol. 14, pp. 28-51, 2001.
15.P. A. McIntosh, “Comparison of RF cavity designs for 3RD generation light sources”, CLRC Daresbury Laboratory, Warrington, UK, 1996.
16.R. Valdiviez, D. Schrage, F. Martinez and W. Clark, “The use of dispersion strengthened copper in accelerator designs,” XX International Linac Conference, Monterey, California, 2000.
17.S. Belomestnykh, P. Barnes, E. Chojnacki, R. Ehrlich, W. Hartung, T. Hays, R. Kaplan, J. Kirchgessner, E. Nordberg, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin and J. Sears, “Development of superconducting RF for CESR,” Proceedings of the Particle Accelerator Conference, Vancouver, Canada, 1997.
18.M.G. Rao and P. Kneisel, “Thermal and mechanical properties of electron beam welded and heat-treated niobium for tesla,” Continuous Electron Beam Accelerator Facility Newport News﹐pp. 1-7, 1993.
19.K. Saito, T. Fujino, H. Inoue, N. Hitomi, E. Kako, T. Shishido, S. Noguchi and Y. Yamazaki, “Feasibility study of Nb/Cu clad superconducting RF cavities,” Superconducting, Vol. 9, No. 2, June, 1999.
20.E. Chiaveri, C. Benvenuti, R. Cosso, D. Lacarrere, K.M. Schirm, M. Taufer and W. Weingarten, “Analysis and results of the industrial production of the superconducting Nb/Cu cavities for the LEP 2 project,” Proceedings of the Particle Accelerator Conference, Dallas, Vol. 3, pp. 1509-1511, 1995.
21.C.C. Yang, “HOM damping in RF cavities of storage ring,” Ph.D. Dissertation, National Tsing Hua University, 2002.
22.羅國輝、王兆恩、張隆海與林明泉, “同步輻射儲存環之低溫超導共振腔簡介,” 同步輻射研究中心簡訊, No. 46, pp. 14-19, 2000.
23.S. Belomestnykh, “The high luminosity performance of CESR with the new generation superconducting cavity,” Report of SRF-990407-03, Cornell University, Ithaca, NY, 1999.
24.J. Kirchgessner and S. Belomestnykh, “On the pressure compensation for the B-cell cavity in the MARK II cryostat,” Report of SRF 970624-06, Laboratory of Nuclear Studies, Cornell University, pp.1-4, 1997.
25.J. Kirchgessner, “The use of super conducting RF for high current applications,” Particle Accelerators, Vol. 46, pp. 151-162, 1994.
26.K. Tsumaki and N. Kumagai, “Vibration measurement of the spring-8 storage ring,” Proceedings of the Particle Accelerator Conference, Chicago, pp. 1482-1484, 2001.
27.J. Mammosser, P. Kneisel and J.F. Benesch, “Analysis of mechanical fabrication experience with CEBAF’s production SRF cavities,” The Institute of Electrical and Electronics Engineers, pp. 947-949, 1993.
28.Y.C. Tsai, “Studies of High-Order-Mode Suppression in Storage Ring RF Cavities,” Ph.D. Dissertation, National Tsing Hua University, 1997.
29.S.T. Huang, “A Study of the Property of Open Cavities,” Ph.D. Dissertation, National Tsing Hua University, 2001
30.宋傑, “儲存環高頻共振腔高次模抑制之數值模擬研究,” 國立清華大學碩士論文, 2001.
31.陳家逸,”高頻共振腔高次模抑制方法之研究,” 國立清華大學碩士論文, 2003.
32.M.G. Rao and P. Kneisel, “High RRR material studies,” JLAB-TN-02-01, 2008.
33.C. Antoine, M. Foley, N. Dhanaraj, “Physical properties of niobium and specifications for fabrication of superconducting cavities,” Fermilab, TD-06-048, 2006.
34.A. Marziali and H. A. Schwettman, “Microphonic analysis of cryo-module design,” Proceedings of the Particle Accelerator Conference, Vol. 2, pp. 950 –952, 1993.
35.B.W. Hakki and P.D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Trans Microwave theory Tech., vol. MTT-8, pp. 402-410, 1960.
36.Jyh Sheen, “Study of microwave dielectric properties measurements by various resonance techniques”, Measurement, Vol.37, pp.123-130, 2005.
37.M.F. Thomas, Cryogenic Engineering, Marcel Dekker Inc﹐pp. 181-214, 1997.
38.K. Ishio, K. Kikuchi, M. Mizumoto and A. Naito, “Fracture toughness and mechanical properties of pure niobium and welded joints of superconducting cavity at 4K,” 9th Workshop on RF Superconductivity, 1999.
39.N. Suzuki, T. Uchida and K. Suzuki, “Test method and strength characteristics of alumina ceramics at cryogenic temperatures,” Cryogenics, Vol. 38, No. 4, pp. 363-366, 1998.
40.S. Ochiai, S. Nishino and K. Osamura, “Nb3Sn Tensile Strength and its Distribution Estimated from Change in Superconducting Critical Current of Preloaded Multifilamentary Composite Wire,” Cryogenics, Vol. 35, No. 1, pp. 50-60, 1995
41.K. Mukugi, N. Ouchi, A. Takemura and Y. Morimoto, “Low temperature mechanical properties of titanium and weld joints (Ti/Ti,Ti/Nb) for helium vessels,” SRF 2001 Proceeding, PT008, 2001.
42.R.P. Walsh, R.R. Mitchell, V.T. Toplosky and R.C. GentZlinger, “Low temperature tensile and fracture toughness properties of SCRF cavity structural materials,” 9 th Workshop on RF- Superconductivity, 1999.
43.C. Compton, T. Bieler, B. Simkin and S. Jadhav, “Measured Properties of High RRR Niobium,” Report of National Superconducting Cyclotron Laboratory, August 9, 2000.
44.M.C. Lin, Ch. Wang, L.H. Chang, G.H. Luo, P.J. Chou and M.J. Huang, “A coupled -field analysis on RF cavity,” Proceedings of the particle accelerator conference, Chicago, pp.1127-1129, 2001.
45.M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, F. S. Kao, M. K. Yeh and M. J. Huang, “A coupled-field analysis on a 500 MHz superconducting radio frequency niobium cavity,” Proceedings of EPAC, Paris, 2002.
46.D. Schrage, “Structural analysis of superconducting accelerator cavities,” XX International Linac Conference, Monterey, California, 2000.
47.M. C. Lin, Ch. Wang, L. H. Chang and G. H. Luo, “Effects of material properties on resonance frequency of a CESR-ΙΙΙ type 500 MHz SRF cavity,” Proceedings of the 2001 Particle Acceleration Conference﹐ pp. 1371-1373, 2003.
48.V. Eduard and K. Theodor, Thin Plates and Shells, Marcel Dekker, New York, 2001.
49.G.R. Kirchhoff, “Uber das gleichgewichi und die bewegung einer elastishem scheibe,” J. Fuer die Reine und Angewandte Mathematik, vol. 40, pp 51-88, 1850.
50.V.V. Novozhilov, The Theory of Thin Shells, P. Noordhoff, Groningen, The Netherlands, 1959.
51.A.L. Gol’denveizer, Theory of Elastic Thin Shells, Pergamon Press, New Work, 1961.
52.鄭傑仁, “由共振腔內部電磁場特性推算腔體材料的機械性質,” 國立清華大學碩士論文, 2005.
53.D. K. Cheng, Field and Wave Electromagnetic, Addison Wesley, New York, 1989.
54.ANSYS Release 11.0, ANSYS, Inc., PA, 2006.
55.ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
56.ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
57.J. Jin, The Finite Element Method in Electromagnetics, Wiley-Interscience, New York, 1993.
58.CNS-12868-G2014 金屬材料拉伸試驗試片,民國63年3月公布, 94年2月修訂.
59.B. Stephan, “Supplement of Worksheets and Useful Datas,” Short course in cryogenics at SRRC, A6.1.1-6.1.2, 1999.