研究生: |
鄭棨文 Cheng, Chi-Wen |
---|---|
論文名稱: |
化學改質製備N摻雜奈米碳管及其特性分析 Synthesis and Characterization of Chemically Modified N-doped Carbon Nanotubes |
指導教授: |
王本誠
Wang, Pen-Cheng |
口試委員: |
林滄浪
Lin, Tsang-Lang 吳劍侯 Wu, Chien-Hou |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 奈米碳管 、化學改質 、摻雜 、N摻雜 |
外文關鍵詞: | Carbon Nanotubes, Chemically modified, Doping, N-doped |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先利用4-疊氮苯胺及硝基苯胺對單壁奈米碳管做化學修飾與共價改質,最後使用葡萄糖及氫氧化鉀加熱產生氫氣環境下對產物進行還原。化學修飾是利用UV點光源以光化學反應的方式產生活性大的自由基,使4-疊氮苯胺與奈米碳管管壁反應,得到管壁苯胺官能基化的奈米碳管,並藉由表面的官能基與硝基苯胺做後續氧化聚合反應。還原的目的是為了使共價改質後奈米碳管上的NO2拉電子官能基轉換為NH2推電子官能基,期許經由此項製程方式實現現今發展較瓶頸的N摻雜奈米碳管。由傅立葉轉換紅外光光譜分析、高解析電子能譜分析及熱重分析可以證實我們在單壁奈米碳管上有效合成及還原硝基苯胺聚合物。透過掃描式電子顯微鏡影像及拉曼光譜分析表面形貌及D/G比值,可以確認奈米碳管化學改質後結構的完整性。由拉曼光譜分析、電性分析、霍爾分析及功函數可以證實化學改質後奈米碳管的N摻雜效應。且經過一個月的觀察,化學改質奈米碳管在有機溶液或去離子水中穩定分散,其薄膜導電率均在誤差範圍內,表明我們成功製備穩定的N摻雜奈米碳管,在碳材料領域是一項重大的突破。
In this study, 4-Azidoaniline and Nitroaniline were used to chemically modify and covalently modify SWNTs. The products were reduced under the hydrogen atmosphere by heating with glucose and potassium hydroxide. Chemical modification is the use of UV light source photochemical reaction to generate large active free radicals, so that 4-Azidoaniline and SWCNTs reaction to obtain functionalized SWCNTs. By the surface of the functional groups and Nitroaniline do the subsequent oxidative polymerization grafting. The purpose of the reduction is to make the pull electron-free radical NO2 on the covalently modified SWNTs into push electron-free radical NH2. By FTIR, XPS and TGA, we can confirm the efficient synthesis and reduction of nitroaniline polymer on SWCNTs. The surface morphology and D/G ratio were analyzed by SEM and Raman spectroscopy to confirm the structural integrity of the carbon nanotubes after chemical modification. Raman spectroscopy, electric analysis, Hall analysis and work function can confirm the N-doping effect of the carbon nanotubes after chemical modification. After one month of observation, the chemically modified carbon nanotubes were stably dispersed in organic solvent or deionized water, and the film conductivity is within the error range, indicating that we successfully prepared stable n-doped carbon nanotubes. It is a major breakthrough in the field of carbon materials.
[1] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, p. 56, 1991.
[2] L.-J. Li, A. Khlobystov, J. Wiltshire, G. Briggs, and R. Nicholas, "Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes," Nature materials, vol. 4, pp. 481-485, 2005.
[3] H. Zhu, C. Xu, D. Wu, B. Wei, R. Vajtai, and P. Ajayan, "Direct synthesis of long single-walled carbon nanotube strands," Science, vol. 296, pp. 884-886, 2002.
[4] B. Zheng, C. Lu, G. Gu, A. Makarovski, G. Finkelstein, and J. Liu, "Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor," Nano Letters, vol. 2, pp. 895-898, 2002.
[5] C. Furtado, U. Kim, H. Gutierrez, L. Pan, E. Dickey, and P. C. Eklund, "Debundling and dissolution of single-walled carbon nanotubes in amide solvents," Journal of the American Chemical Society, vol. 126, pp. 6095-6105, 2004.
[6] M. J. O'connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, et al., "Band gap fluorescence from individual single-walled carbon nanotubes," Science, vol. 297, pp. 593-596, 2002.
[7] M. Monthioux, B. Smith, B. Burteaux, A. Claye, J. Fischer, and D. Luzzi, "Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation," Carbon, vol. 39, pp. 1251-1272, 2001.
[8] J. Kong, A. M. Cassell, and H. Dai, "Chemical vapor deposition of methane for single-walled carbon nanotubes," Chemical Physics Letters, vol. 292, pp. 567-574, 1998.
[9] Y. Murakami, Y. Miyauchi, S. Chiashi, and S. Maruyama, "Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol," Chemical Physics Letters, vol. 374, pp. 53-58, 2003.
[10] Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, "Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes," The Journal of Physical Chemistry B, vol. 105, pp. 11424-11431, 2001.
[11] J. Kong, C. Zhou, A. Morpurgo, H. Soh, C. Quate, C. Marcus, et al., "Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes," Applied Physics A: Materials Science & Processing, vol. 69, pp. 305-308, 1999.
[12] M. S. Dresselhaus and P. Avouris, "Introduction to carbon materials research," in Carbon nanotubes, ed: Springer, 2001, pp. 1-9.
[13] P. Avouris, "Molecular electronics with carbon nanotubes," Accounts of chemical research, vol. 35, pp. 1026-1034, 2002.
[14] A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, et al., "High-field quasiballistic transport in short carbon nanotubes," Physical Review Letters, vol. 92, p. 106804, 2004.
[15] A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, et al., "Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays," Nano letters, vol. 4, pp. 1319-1322, 2004.
[16] S. Heinze, J. Tersoff, and P. Avouris, "Electrostatic engineering of nanotube transistors for improved performance," Applied Physics Letters, vol. 83, pp. 5038-5040, 2003.
[17] P. G. Collins, K. Bradley, M. Ishigami, and d. A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes," science, vol. 287, pp. 1801-1804, 2000.
[18] M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, et al., "Resonant electron scattering by defects in single-walled carbon nanotubes," Science, vol. 291, pp. 283-285, 2001.
[19] M. C. Hersam, "Progress towards monodisperse single-walled carbon nanotubes," Nature Nanotechnology, vol. 3, pp. 387-394, 2008.
[20] M. J. Green, "Analysis and measurement of carbon nanotube dispersions: nanodispersion versus macrodispersion," Polymer International, vol. 59, pp. 1319-1322, 2010.
[21] S. W. Kim, T. Kim, Y. S. Kim, H. S. Choi, H. J. Lim, S. J. Yang, et al., "Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers," Carbon, vol. 50, pp. 3-33, 2012.
[22] M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, et al., "Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping," Chemical physics letters, vol. 342, pp. 265-271, 2001.
[23] E. Nativ-Roth, Y. Levi-Kalisman, O. Regev, and R. Yerushalmi-Rozen, "On the route to compatibilization of carbon nanotubes," Journal of polymer engineering, vol. 22, pp. 353-368, 2002.
[24] S. Marchesan, K. Kostarelos, A. Bianco, and M. Prato, "The winding road for carbon nanotubes in nanomedicine," Materials today, vol. 18, pp. 12-19, 2015.
[25] T. Choi, S. H. Kim, C. W. Lee, H. Kim, S.-K. Choi, S.-H. Kim, et al., "Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing," Biosensors and Bioelectronics, vol. 63, pp. 325-330, 2015.
[26] E. P. Favvas, S. F. Nitodas, A. A. Stefopoulos, S. K. Papageorgiou, K. L. Stefanopoulos, and A. C. Mitropoulos, "High purity multi-walled carbon nanotubes: Preparation, characterization and performance as filler materials in co-polyimide hollow fiber membranes," Separation and Purification Technology, vol. 122, pp. 262-269, 2014.
[27] N. Mubarak, J. Wong, K. Tan, J. Sahu, E. Abdullah, N. Jayakumar, et al., "Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes," Journal of Molecular Catalysis B: Enzymatic, vol. 107, pp. 124-131, 2014.
[28] T. Bortolamiol, P. Lukanov, A.-M. Galibert, B. Soula, P. Lonchambon, L. Datas, et al., "Double-walled carbon nanotubes: quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening," Carbon, vol. 78, pp. 79-90, 2014.
[29] N. G. Sahoo, H. Bao, Y. Pan, M. Pal, M. Kakran, H. K. F. Cheng, et al., "Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study," Chemical communications, vol. 47, pp. 5235-5237, 2011.
[30] T. Mugadza and T. Nyokong, "Covalent linking of ethylene amine functionalized single-walled carbon nanotubes to cobalt (II) tetracarboxyl-phthalocyanines for use in electrocatalysis," Synthetic Metals, vol. 160, pp. 2089-2098, 2010.
[31] T. Coccini, E. Roda, D. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, et al., "Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells," Toxicology, vol. 269, pp. 41-53, 2010.
[32] S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, and M. S. Saeedi, "Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese (III) salophen supported on multi-wall carbon nanotubes," Applied Catalysis A: General, vol. 381, pp. 233-241, 2010.
[33] C. Yu, A. Murali, K. Choi, and Y. Ryu, "Air-stable fabric thermoelectric modules made of N-and P-type carbon nanotubes," Energy & Environmental Science, vol. 5, pp. 9481-9486, 2012.
[34] M. Shim, A. Javey, N. W. Shi Kam, and H. Dai, "Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors," Journal of the American Chemical Society, vol. 123, pp. 11512-11513, 2001.
[35] H. Dai, A. Javey, E. Pop, D. Mann, W. Kim, and Y. Lu, "Electrical transport properties and field effect transistors of carbon nanotubes," Nano, vol. 1, pp. 1-13, 2006.
[36] H. Wang, P. Wei, Y. Li, J. Han, H. R. Lee, B. D. Naab, et al., "Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits," Proceedings of the National Academy of Sciences, vol. 111, pp. 4776-4781, 2014.
[37] A. D. Franklin, S. O. Koswatta, D. B. Farmer, J. T. Smith, L. Gignac, C. M. Breslin, et al., "Carbon nanotube complementary wrap-gate transistors," Nano letters, vol. 13, pp. 2490-2495, 2013.
[38] L. Suriyasena Liyanage, X. Xu, G. Pitner, Z. Bao, and H.-S. P. Wong, "VLSI-compatible carbon nanotube doping technique with low work-function metal oxides," Nano letters, vol. 14, pp. 1884-1890, 2014.
[39] T.-J. Ha, K. Chen, S. Chuang, K. M. Yu, D. Kiriya, and A. Javey, "Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films," Nano letters, vol. 15, pp. 392-397, 2014.
[40] K. Chen, D. Kiriya, M. Hettick, M. Tosun, T.-J. Ha, S. R. Madhvapathy, et al., "Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density," APL Materials, vol. 2, p. 092504, 2014.
[41] J. Zhang, C. Wang, Y. Fu, Y. Che, and C. Zhou, "Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits," Acs Nano, vol. 5, pp. 3284-3292, 2011.
[42] Y. Jang, S. Kim, S. W. Jun, B. H. Kim, S. Hwang, I. K. Song, et al., "Simple one-pot synthesis of Rh–Fe 3 O 4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes," Chemical Communications, vol. 47, pp. 3601-3603, 2011.
[43] T. Mitsudome, Y. Mikami, M. Matoba, T. Mizugaki, K. Jitsukawa, and K. Kaneda, "Design of a silver–cerium dioxide core–shell nanocomposite catalyst for chemoselective reduction reactions," Angewandte Chemie International Edition, vol. 51, pp. 136-139, 2012.
[44] H. U. Blaser, H. Steiner, and M. Studer, "Selective catalytic hydrogenation of functionalized nitroarenes: an update," ChemCatChem, vol. 1, pp. 210-221, 2009.
[45] A. Rahman and S. Jonnalagadda, "Swift and selective reduction of nitroaromatics to aromatic amines with Ni–boride–silica catalysts system at low temperature," Catalysis letters, vol. 123, pp. 264-268, 2008.
[46] R. V. Jagadeesh, G. Wienhöfer, F. A. Westerhaus, A.-E. Surkus, M.-M. Pohl, H. Junge, et al., "Efficient and highly selective iron-catalyzed reduction of nitroarenes," Chemical Communications, vol. 47, pp. 10972-10974, 2011.
[47] Y. Gao, D. Ma, C. Wang, J. Guan, and X. Bao, "Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature," Chemical Communications, vol. 47, pp. 2432-2434, 2011.
[48] G. Wienhöfer, I. n. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, et al., "General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base," Journal of the American Chemical Society, vol. 133, pp. 12875-12879, 2011.
[49] X. B. Lou, L. He, Y. Qian, Y. M. Liu, Y. Cao, and K. N. Fan, "Highly Chemo‐and Regioselective Transfer Reduction of Aromatic Nitro Compounds using Ammonium Formate Catalyzed by Supported Gold Nanoparticles," Advanced Synthesis & Catalysis, vol. 353, pp. 281-286, 2011.
[50] A. Saha and B. Ranu, "Highly chemoselective reduction of aromatic nitro compounds by copper nanoparticles/ammonium formate," The Journal of organic chemistry, vol. 73, pp. 6867-6870, 2008.
[51] K. Junge, B. Wendt, N. Shaikh, and M. Beller, "Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes," Chemical communications, vol. 46, pp. 1769-1771, 2010.
[52] O. Dipeolu, E. Green, and G. Stephens, "Effects of water-miscible ionic liquids on cell growth and nitro reduction using Clostridium sporogenes," Green Chemistry, vol. 11, pp. 397-401, 2009.
[53] D. A. Ferreira, R. C. Da Silva, J. C. da Costa Assunção, M. C. de Mattos, T. L. G. de Lemos, and F. J. Q. Monte, "Lens culinaris: A new biocatalyst for reducing carbonyl and nitro groups," Biotechnology and bioprocess engineering, vol. 17, pp. 407-412, 2012.
[54] B. Li and Z. Xu, "A nonmetal catalyst for molecular hydrogen activation with comparable catalytic hydrogenation capability to noble metal catalyst," Journal of the American Chemical Society, vol. 131, pp. 16380-16382, 2009.
[55] H. K. Kadam and S. G. Tilve, "Copper (II) bromide as a procatalyst for in situ preparation of active Cu nanoparticles for reduction of nitroarenes," RSC Advances, vol. 2, pp. 6057-6060, 2012.
[56] M. Kumar, U. Sharma, S. Sharma, V. Kumar, B. Singh, and N. Kumar, "Catalyst-free water mediated reduction of nitroarenes using glucose as a hydrogen source," Rsc Advances, vol. 3, pp. 4894-4898, 2013.
[57] D. R. Ulrich, "Multifunctional macromolecular ultrastructures: Introductory Comments Speciality Polymers' 86," Polymer, vol. 28, pp. 533-542, 1987.
[58] M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, et al., "Sidewall functionalization of carbon nanotubes," Angewandte Chemie International Edition, vol. 40, pp. 4002-4005, 2001.
[59] M. J. Moghaddam, S. Taylor, M. Gao, S. Huang, L. Dai, and M. J. McCall, "Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry," nano letters, vol. 4, pp. 89-93, 2004.
[60] J.-K. Wu, C.-S. Yang, Y.-S. Wu, P.-C. Wang, and F.-G. Tseng, "Continuous affinity-gradient nano-stationary phase served as a column for reversed-phase electrochromatography and matrix carrier in time-of-flight mass spectrometry for protein analysis," Analytica chimica acta, vol. 889, pp. 166-171, 2015.
[61] M. Khalid and F. Mohammad, "Preparation, electrical properties and thermal stability of conductive polyaniline: nylon-6, 6 composite films," Express Polymer Letters, vol. 1, pp. 711-716, 2007.
[62] L. Ding, Q. Li, D. Zhou, H. Cui, R. Tang, and J. Zhai, "Copolymerization of aniline with m-nitroaniline and removal of m-nitroaniline from aqueous solutions using a polyaniline-modified electrode: A comparative study," Electrochimica Acta, vol. 77, pp. 302-308, 2012.
[63] K. E. Wise, C. Park, E. J. Siochi, and J. S. Harrison, "Stable dispersion of single wall carbon nanotubes in polyimide: the role of noncovalent interactions," Chemical physics letters, vol. 391, pp. 207-211, 2004.