簡易檢索 / 詳目顯示

研究生: 游逸如
Yu, Yi-Ju
論文名稱: 以最高產出為目標求解十二吋晶圓廠派車法則與搬運車輛數之研究
A Study of Dispatching Rules and OHT Fleet Size to Maximize 300mm Wafer Fab Throughput
指導教授: 陳建良
Chen, James C.
口試委員: 陳子立
Chen, Tzu-Li
陳盈彥
Chen, Yin-Yann
學位類別: 碩士
Master
系所名稱: 工學院 - 全球營運管理碩士雙聯學位學程
Dual Master Program for Global Operation Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 87
中文關鍵詞: 自動物料搬運系統晶圓廠OHT派車法則
外文關鍵詞: Semiconductor manufacturins, OHT, dispatching rules, AMHS
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶圓廠AMHS是個複雜的系統,每日從事大量的搬運工作,在達成目標產出的同時,需維護晶圓品質、縮短產出時間並提升設備利用率,該系統績效受到軌道型態、機器擺設方式、流量、搬運車輛數、派車法則等諸多因素的影響,本研究旨在快速直接地對一假設環境判斷顯著影響因子、以及這些顯著因子如何影響各項績效指標,並採用反應曲面法對產出進行優化、求得最適合的派車法則與車輛數搭配。由於此環境將高頻率使用機器靠近interbay擺放,本研究進而調整FEFS、提出M-FEFS,指定空車沿靠近高頻率機器的軌道運行,目的為增加搬運車受派搬運任務的機率、縮短空車行走距離、並降低物件在機台的等待時間,研究結果顯示在高流量與中等流量時M-FEFS績效較佳。


    Wafer fab AMHS is a complicated system facing multiple operational challenges. Its performances are subject to fab layout, production tool arrangement, flow rate, fleet size, as well as dispatching rules. This research firstly identifies significant factors to a hypothetical 300mm wafer fab and analyzes how the factors influence its performances. Secondly, the research seeks to find configurations of dispatching rules and fleet size for throughput maximization. Considering that in this layout, highly visited production tools are placed closer to the interbay, a dispatching rule modified from FESE, termed as M-FEFS, is proposed. Under M-FEFS, empty OHTs roam along the highly visited production tools to increase their possibility to be assigned with transportation tasks and to shorten empty vehicles’ travel time. The simulation results show that M-FEFS achieves higher throughput than the other three dispatching rules when at high, and medium flow rates.

    Abstract………….……………………………………………………...i Acknowledgment………………….……………………………...……iii Table of Contents……….………………………………………………..iv List of Tables………………….……………………………………….vi List of Figures……………..…………………………………………..vii Chapter 1 Introduction………….……………………………………………………1 1-1. Research Background………….……………………………………………………1 1-2. Research Purpose and Scope………….……………………………………………………3 1-3. Research Framework………….……………………………………………………4 Chapter 2 Literature Review………….……………………………………………………6 2-1. AMHS Infrastructure and Layout………….……………………………………………………6 2.2 AMHS Performance Evaluation………….……………………………………………………9 2-3. Dispatching Rules………….……………………………………………………11 2-4. Fleet Size………….……………………………………………………14 Chapter 3 Research Methodology………….……………………………………………………16 3-1. Simulation Environment Parameters………….……………………………………………………16 3-2. Experiment Design………….……………………………………………………20 3-2-1. OHT Fleet Size………….……………………………………………………20 3-2-2. Dispatching Rules………….……………………………………………………23 3-2-3. Lot Release Intervals………….……………………………………………………27 3-3. Performance Index………….……………………………………………………28 3-4. Warm-up Period………….……………………………………………………29 Chapter 4 Data Collection and Analysis………….……………………………………………………31 4-1. Simulation Model and Data………….……………………………………………………31 4-2. Analysis of Variances………….……………………………………………………41 4-2-1. Throughput………….……………………………………………………41 4-2-2. OHT Utilization………….……………………………………………………45 4-2-3. Cycle Time………….……………………………………………………49 4-3. Optimization………….……………………………………………………53 Chapter 5 Conclusions and Future Research………….……………………………………………………57 5.1 Research Conclusions………….……………………………………………………57 5.2 Future Research………….……………………………………………………58 References………….……………………………………………………60 Appendix A From-To Table………….……………………………………………………62 A.1 Tool List and Corresponding Number in From-To Table………….……………………………………………………62 A.2 Transport Counts From-To Table (Times) of 30-Hour Lot Release Interval………….……………………………………………………63 A.3 Transport Counts From-To Table (Times) of 45-Hour Lot Release Interval………….……………………………………………………67 A.4 Transport Counts From-To Table (Times) of 60-Hour Lot Release Interval………….……………………………………………………71 A.5 Transport Time From-To Table (Hours)………….……………………………………………………75 Appendix B Fabrication Steps………….……………………………………………………79

    1. Cambell, E., & Ammenheuser, J. (2000). 300mm Factory Layout and Material Handling Modeling: Phase II Report.
    2. Dieseldorff, C. G., Tseng, C., & SEMI. (2021). 300mm Fab Outlook to 2024.
    3. Egbelu, P. J., & Tanchoco, J. M. A. (1984). Characterization of automatic guided vehicle dispatching rules. International Journal of Production Research, 22(3), 359–374.
    4. Huang, C. W., & Borst, C. L. (2016). Estimation of number of PGV for a 450mm fab: FA: Factory automation. 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference, ASMC 2016, 164–167. doi: 10.1109/ASMC.2016.7491117
    5. Hung, P. C., & Liu, F. H. (2001). Estimation of the Fleet Size for a Multi-load Automated Guided Vehicle System. Proc. Natl. Sci. Counc. ROC(A), 25(4), 244–253.
    6. Kim, J., Yu, G., & Jang, Y. J. (2016). Semiconductor FAB layout design analysis with 300-mm FAB data: “Is minimum distance-based layout design best for semiconductor FAB design?” Computers and Industrial Engineering, 99, 330–346. doi: 10.1016/j.cie.2016.02.012
    7. Law, A. M. (2015). Simulation Modeling and Analysis (5th ed.). McGraw-Hill Education.
    8. Liao, D. Y., & Fu, H. S. (2002). Dynamic OHT allocation and dispatching in large-scaled 300 mm AMHS management. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).
    9. Liao, D. Y., & Wang, C. N. (2006). Differentiated preemptive dispatching for automatic materials handling services in 300 mm semiconductor foundry. The International Journal of Advanced Manufacturing Technology, 29, 890–896.
    10. Liao, D. Y., & Wang, C. N. (2004). Neural-Network-Based Delivery Time Estimates for Prioritized 300-mm Automatic Material Handling Operations. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 17(3).
    11. Lin, J. T., &Wang, F. K. (2003). Connecting transport AMHS in a wafer fab. International Journal of Production Research, 41(3), 529–544.
    12. Lin, J. T., Wang, F. K., & Yang, C. J. (2005). The Performance of the Number of Vehicles in a Dynamic Connecting Transport AMHS. International Journal of Production Research, 43(11), 2263–2276.
    13. Mahadevan, B., & Narendran, T. T. (1990). Design of an automated guided vehicle-based material handling system for a flexible manufacturing system. International Journal of Production Research, 28(9).
    14. Maxwell, W. L., & Muckstadt, J. A. (1982). Design of Automatic Guided Vehicle Systems. AIIE Transactions, 14, 114–124.
    15. Qiao, L. L., Su, Z., Fei, M., & Chu, Z. (2013). Adaptive Dispatching Rule for Semiconductor Wafer Fabrication Facility. IEEE Transactions on Automation Science and Engineering, 10(2), 354–364.
    16. Qin, W., Zhuang, Z., Zhou, Y., & Sun, Y. (2021). Dynamic dispatching for interbay automated material handling with lot targeting using improved parallel multiple-objective genetic algorithm. Computers and Operations Research, 131, 105264. doi: 10.1016/j.cor.2021.105264
    17. Sinriech, D., & Tanchoco, J. M. A. (1992). An economic model for determining AGV fleet size. International Journal of Production Research, 30(6), 1255–1268.
    18. Tung, J., Sheen, T., Kao, M., &Chen, C. H. (2013). Optimization of AMHS Design for a Semiconductor Foundry Fab by Using Simulation Modeling. 2013 Winter Simulations Conference (WSC). doi: 10.1109/WSC.2013.6721742
    19. Wang, C. N., & Chen, L. C. (2012). The heuristic preemptive dispatching method of material transportation system in 300 mm semiconductor fabrication. Journal of Intellegent Manufacturing, 23, 2047–2056.
    20. Wang, C. N., Hsu, H. P., & Tran, V. V. (2017). An Improved Dispatching Method (a-HPDB) for Automated Material Handling System with Active Rolling Belt for 450 mm Wafer Fabrication. Applied Sciences, 7((8)), 780.
    21. Wu, L., Zhang, Z., Zhang, J., Zhong, R. Y., & Wang, J. (2021). A performance model of automated material handling systems with double closed-loops and shortcuts in 300 mm semiconductor wafer fabrication systems. Journal of Manufacturing Systems, 58(PA), 316–334. doi: 10.1016/j.jmsy.2020.12.006

    QR CODE