簡易檢索 / 詳目顯示

研究生: 鍾昆志
Chung, Kun-Zhi
論文名稱: 碘化氫於微流道裂解之探討
Decomposition of hydrogen iodide in microchannel
指導教授: 潘欽
Pan, Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 79
中文關鍵詞: 產氫核能產氫熱化學碘硫循環
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在進行核能產氫的基礎研究。我們選擇最有潛力的碘-硫循環為研究對象,了解其基本機制。本研究以微機電製程製作微流道為實驗反應器。由於碘化氫裂解所需的工作溫度300°C-400°C之間,為一相當高的工作溫度,故利用微流道的高比表面積來增加熱傳與轉換效率。本研究並濺鍍白金觸媒於於反應器底部及兩側壁,通入碘化氫氣體(HI)並加熱裂解,探討其轉換效率。研究中係利用微機電製程製作出不同幾何形狀之微流道,分別有等截面積和漸擴微流道,並分別針對觸媒、反應操作溫度及碘化氫體積流率變化等來探討其轉換效率。本研究的結果顯示白金觸媒能有效提高碘化氫轉換效率,但當反應溫度大於350°C後則無太大變化。等截面積微流道之轉換效率高於漸擴微流道。當碘化氫體積流率增大時轉換效率亦同時明顯提高。但在0.9ml/min之後,轉換效率達到飽和,流率增加不再有顯著的效應。


    摘要……………………………………………………………………………………I 誌謝…………………………………………………………………………………II 目錄…………………………………………………………………………………III 表目錄………………………………………………………………………………V 圖目錄………………………………………………………………………………VI 符號說明表………………………………………………………………………VII 第一章 緒論 1 1-1 前言 1 1-2 產氫簡介 2 1-2-1 水產氫 2 1-2-2 石化能源產氫 4 1-2-3 生質能產氫 5 1-3 碘硫循環簡介 5 1-4 研究動機 8 1-5 研究方法 9 1-6 論文架構 10 第二章 文獻回顧 11 2-1 邦生反應系統探討相關文獻 11 2-2 HI反應系統研究等相關文獻 15 2-2-1 HI濃度提升探討 15 2-2-2 HI裂解與觸媒之探討 17 第三章 微流道製作與HI裂解實驗系統 21 3-1 微流道製作 21 3-1-1 相關微機電製做技術基本原理 21 3-1-2 微流道製作程序 23 3-1-3 測試段流道 24 3-2 HI裂解實驗系統 28 3-2-1 實驗設備環路 28 3-2-2 人機介面自動化控制與量測擷取系統 31 3-2-3 氣相層析儀量測系統 33 3-3 實驗方法與步驟 34 第四章 結果與討論 36 4-1 流道幾何設計 36 4-2 氫氣轉換效率計算 38 4-3 不準度分析 42 4-4 轉換效率 44 4-4-1 觸媒與溫度的效應 44 4-4-2 流道截面積之效應 47 4-4-3 入口流率之效應 48 4-4-4 與文獻的研究結果比較 52 4-4-5 微流道反應器的壓降 55 4-4-6 討論 57 第五章 結論 59 5-1 本論文研究成果 59 5-2 未來建議 59 參考文獻 61 附錄A 實驗數據 68 附錄B 實驗環路系統實圖 76 附錄C 質量流量計系統 79

    [1] F.S. Hsu,“The Energy Problem at a Glance,”Preface of World Will be More Beautiful with Nuclear Power, by M. Lee and T. R. Liang, Nuclear Association of R. O. C.
    [2] 何玉麗,“燃料電池在能源供應體系中扮演的角色”,台灣經濟 研究月刊,第24卷第11期,第13-21頁,2001。
    [3] 左峻德,“知識經濟新典範-氫電科技產業發展之重要性”,台灣經濟研究月刊,第24卷第7期,第80-85頁,2001。
    [4] 毛宗強,“氫能-21世紀的綠色能源”,能源叢書,2008。
    [5] 顧忠茂,“氫能利用與核能制氫研究開發綜述”,原子能科學技 術,第40期,第30-35頁,2006。
    [6] 張平、于波、陳靖、徐景明,“熱化學循環分解水制氫研究進展”,化學進展,第17期,第643-650頁,2005。
    [7] X. Vitart, P. CARLES,A. L. Duigou,“Thermochemical Production of Hydrogen Using Nuclear Heat”, a Survey of Technical and Economical Issue, 2005.
    [8] M. Sakurai, H. Nakajima, K. Onuki, S. Shimizu,“Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process”, International Journal of Hydrogen Energy, Vol. 25, pp. 605-611, 2000.
    [9] M. Sakurai, H. Nakajima, R. Amir, K. Onuki, S. Shimizu, “Experimental study on side-reaction occurrencecondition in the iodine-sulfur thermochemical hydrogen production process”, International Journal of Hydrogen Energy, Vol. 25, pp. 613-619, 2000.
    [10] M. Sakurai, H. Nakajima, K. Onuki, S. Shimizu,“Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process”, International journal of hydrogen energy, Vol. 25, pp. 605-611, 2000.
    [11] S. Kubo, H. Nakajima, S. Kasahara, S. Higashi,T. Masaki, H. Abe, Kaoru Onuki,“A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine–sulfur process”, Nuclear Engineering and Design, Vol. 233, pp. 347-354, 2004.
    [12] M. Nomura, S. Kasahara, H. Okuda, S. I. Nakao, “Evaluation of the IS process featuring membrane techniques by total thermal efficiency”, International journal of hydrogen energy, Vol. 30, pp. 1465-1473, 2005.
    [13] A. Giaconia, G. Caputo, A. Ceroli, M. Diamanti, V. Barbarossa, P. Tarquini, S. Sau,“Experimental study of two phase separation in the Bunsen section of the sulfur–iodine thermochemical cycle”, International Journal of Hydrogen Energy, Vol. 32, pp. 531-536, 2007.
    [14] B.J. Lee, H.C. NO, H.J. Yoon, S.J. Kim, E.S. Kim,“An optimal operating window for the Bunsen process in the I–S thermochemical cycle”, International Journal of Hydrogen Energy.
    [15] M. Nomura, S.I. Nakao,“Development of an Electrochemical Cell for Efficient Hydrogen Production through the IS Process”, ENVIRONMENTAL AND ENERGY ENGINEERING.
    [16] K. Onuki, G.J. Hwang, Arifal, S. Shimizu,“Electro-electrodialysis of hydriodic acid in the presence of iodine at elevated temperature”, Journal of Membrane Science, Vol. 192, pp. 193-199, 2001.
    [17] G.J. Hwang, K. Onuki,“Simulation study on the catalytic decomposition of hydrogen iodide in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process”, Journal of Membrane Science, Vol. 194, pp. 207-215, 2001.
    [18] G.J. Hwang, K. Onuki, M. Nomura, S. Kasahara, J.W. Kim,“Improvement of the thermochemical water-splitting IS (iodine-sulfur) process by electro-electrodialysis”, Journal of Membrane Science , Vol. 220, pp.129-136, 2003.
    [19] C.J. Orme, M.G. Jones, F. F. Stewart,“Pervaporation of water from aqueous HI using Nafion®-117 membranes for the sulfur–iodine thermochemical water splitting process”, Journal of Membrane Science, Vol. 252, pp. 245-252, 2005.
    [20] S. D. Hong, J. K. Kim, B. K. Kim, S. Choi,K. K. Bae, G. J. Hwang, “Evaluation on the electro-electrodialysis to concentrate HI from HIx solution by using two types of the electrode”, Internationaljournal of hydrogen energy, Vol. 32, pp. 2005-2009, 2007.
    [21] C.S. Park, J.M. KIM, K.S. KANG, G.J. Hwang, K.K. Bae,“The catalytic decomposition of hydrogen iodine in the IS thermochemical cycle”, Hydrogen Energy Research Group, Koera Institute of Energy Research, 2006.
    [22] S.R. Wang, W.J. Tseng, “On the effect of parameters for synthesizing Platinum nanoparticles by alcohol reduction method”, 中華民國陶業研究學會年會論文集, 2007.
    [23] J.M. Kim, J.E. Park, Y.H. Kim, K.S. Kang, C.H. Kim, C.S. Park, K.K. Bae,“Decomposition of hydrogen iodide on Pt/C-based catalysts for hydrogen production”, International journal of hydrogen energy, Vol. 33, pp. 4974-4980, 2008.
    [24] P. Favuzza, C. Felicia, M. Lanchia, R. Liberatorea, C.V. Mazzocchiab, A. Spadonia, P. Tarquinia, A.C. Titob,“Decomposition of hydrogen iodide in the S–I thermochemical cycle over Ni catalyst systems”, International journal of hydrogen energy, Vol. 34, pp. 4049-4056, 2009.
    [25] Y. Zhang, Z. Wang, J. Zhou, K. Cen,“Ceria as a catalyst for hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production”, International journal of hydrogen energy, Vol. 34, pp.1688-1695, 2009.
    [26] Y. Zhang, Z. Wang, J. Zhou, J. Liu, K. Cen,“Effect of preparation method on platinum-ceria catalysts for hydrogen iodide decomposition in sulfur-iodine cycle”, International journal of hydrogen energy, Vol. 33, pp. 602-607, 2008.
    [27] Z.C. Wang, L. J. Wang , P. Zhang, S. Z. Chen, J. M. Xu, J. Chen, “Effect of preparation methods on Pt/alumina catalysts for the hydrogen iodide catalytic decomposition”, Chinese Chemical Letters, Vol. 20, PP. 102-105, 2009.
    [28] L. M. Petkovica, D. M. Ginosara, H. W. Rollinsa, K. C. Burcha, C. Deianab, H. S. Silvab, M. F. Sardellab, D. Granadosb,“Activated carbon catalysts for the production of hydrogen via the sulfur–iodine thermochemical water splitting cycle” , International journal of hydrogen energy, Vol. 34, PP. 4057-4064, 2009.
    [29] M. Lanchi, G. Caputo, R. Liberatore, L. Marrelli, S. Sau, A. Spadoni, P. Tarquini,“Use of metallic Ni for H2 production in S-I thermochemical cycle: Experimental and theoretical analysis”, International journal of hydrogen energy, Vol. 34, pp. 1200-1207, 2009.
    [30] G.J. Hwang, K. Onuki, S. Shimizua, H. Ohya,“Hydrogen separation in H2-H2O-HI gaseous mixture using the silica membrane prepared by chemical vapor deposition”, Journal of Membrane Science, Vol. 162, PP. 83-90, 1999.
    [31] M. Nomura,S. Kasahara, and S.I. Nakao,“Silica Membrane Reactor for the Thermochemical Iodine-Sulfur Process To Produce Hydrogen”, Ind. Eng. Chem. Res, Vol.43, pp.5874-5879, 2004.
    [32] Y. Kawamura, N. Ogura, T. Yamamoto, A. Igarashi,“Aminiaturized methanol reformer with Si-based microreactor for a small PEMFC”, Chemical Engineering Science, Vol.61, pp.1092-1101, 2006.
    [33] X. Yu, S.T. Tu, Z. Wang, Y. Qi,“Development of a microchannel reactor concerning steam reforming of methanol”, Chemical Engineering Journal, Vol.116, pp.123-132, 2006.
    [34] Y. Tang, W. Zhou, M. Pan, H. Chen, W. Liu, H. Yu,“Porous copper fiber sintered felts: An innovative catalyst support of methanol steam reformer for hydrogen production”, I NTERNATI ONAL JOURNAL OF HYDROGEN ENERGY, Vol.33, pp.2950-2956, 2008.
    [35] Y. Oosawa,“The Decomposition of Hydrogen Iodide and Separation of the Products by the Combination of an Adsorbent with Catalytic Activity and a Temperature-swing Method” , Bull Chem. Soc. Jpn, Vol.54, pp.2908-2912, 1981.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE