研究生: |
粘文雄 |
---|---|
論文名稱: |
Nonparametric Analysis of Covariance in Partial Linear Models with Factor-by-curve Interactions |
指導教授: | 黃禮珊 |
口試委員: |
陳宏
張金廷 金哲振 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 無母數方法 、共變數分析 |
相關次數: | 點閱:5 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們主要的研究內容為使用的共變數分析探討不同曲線下的統計檢定,也就是說在不同的因子下,探討曲線之間的關係。在給定的假設條件下,本論文中提到了五個統計檢定,並且推導出每個檢定中的SSR與SSE,進而產生F 檢定的統計量。在模擬的部分有相對應的結果和性質。
REFERENCES
1. BOWMAN, A. W. and AZZALINI, A. (1997). Applied Smoothing Techniques for Data
Analysis: the Kernel Approach with S-Plus Illustrations. Oxford University Press,
Oxford.
2. BOWMAN, A. W. and YOUNG, S. (1996). Graphical comparison of nonparametric
curves. Appl. Statist. 45, 83-98.
3. DELGADO, M. A. (1993). Testing the equality of nonparametric regression curves.
Statist. Probab. Lett. 17, 199-204.
4. FAN, J. and GIJBELS, I. (1996). Local Polynomial Modelling and Its Applications.
Chapman & Hall, London.
5. GØRGENS, T. (2002). Nonparametric comparison of regression curves by local linear
tting. Statist. Probab. Lett. 60, 81-89.
6. HONG, W. Q. (2014). Testing the equality of multiple regression curves based on local
polynomial regression. Master thesis, N. T. H. U., Hsinchu, TAIWAN.
7. HUANG, L. S. and CHEN, J. (2008). Analysis of variance, coecient of determination,
and F-test for local polynomial regression. Ann. Statist. 36, 2085-2109.
8. HUANG, L. S. and DAVIDSON, P. W. (2010). Analysis of variance and F-tests for
partial linear models with applications to environmental health data. J. Am. Stat.
Assoc. 105, 991-1004.
9. HUANG, L. S. and SU, H. (2009). Nonparametric F-tests for nested global and local
polynomial models. J. Stat. Plan. Infer. 139, 1372-1380.
10. Opsomer, J. D. and Ruppert, D. (1999). A root-n consistent estimators for semiparametric
additive models. J. Comput. Graph. Stat. 8, 715-732.
38
11. Pardo-Fernandez, J. C., Van Keilegom, I. and Gonzalez-Manteiga, W. (2007). Testing
for the equality of k regression curves. Stat. Sinica. 17, 1115-1137.
12. KING, E. C., HART, J. D. and WEHRLY, T. E. (1991). Testing the equality of two
regression curves using linear smoothers. Statist. Probab. Lett. 12, 239-247.
13. KULASEKERA, K. B. (1995). Comparison of regression curves using quasi-residuals.
J. Amer. Statist. Assoc. 90, 1085-1093.
14. MUNK, A. and DETTE, H. (1998). Nonparametric comparison of several regression
functions: Exact and asymptotic theory. Ann. Statist. 26, 2339-2368.
15. Speckman, P. (1988). Kernel smoothing in partial linear models. J. Roy. Stat. Soc.
B. 50, 413-436.
16. SRIHERA, R. and STUTE, W. (2010). Nonparametric comparison of regression functions
. J. Multivar. Anal. 101, 2039-2059.
17. Wood S. N. (2006). Generalized Additive Models: An introduction with R. Chapman
& Hall, London.
18. YOUNG, S. G. and BOWMAN, A. W. (1995). Nonparametric analysis of covariance.
Biometrics 51, 920-931.