簡易檢索 / 詳目顯示

研究生: 黃仁鴻
Huang, Ren-Hong
論文名稱: 以選擇性雷射直寫形成類奈米碳管應用於奈米連線
Selective Formation of Carbon Nanotube-like Structures by Laser Direct Writing for Nano-interconnect Application
指導教授: 游萃蓉
Yew, Tri-Rung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 雷射直寫奈米碳管奈米連線
外文關鍵詞: laser direct writing, carbon nanotube, nano-interconnect
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究欲以雷射直寫方式,形成高密度且具導電性的類奈米碳管(CNT-like)結構應用於奈米連線,主要透過改變沉積非晶碳膜(a-C)所用之碳源氣體(C2H2、CH4)與氫氣之流量比,得到不同特性之a-C,並探討其對以雷射直寫成長CNT-like結構之影響。此外,欲驗證以此技術輔以圖形化定義催化劑,來選擇性成長CNT-like結構,形成以a-C為絕緣層及CNT-like結構為導電層之奈米連線的可行性。
    本研究以波長為248 nm之氟化氪準分子脈衝雷射 (KrF excimer laser)為雷射源,並以10 s、1 Hz之條件照射在先後鍍有10 nm Ti、10 nm Ni及30 nm a-C的基座上,結果發現,將雷射能量密度由46 mJ/cm2逐降至36 mJ/cm2之方式,可形成較密之導電CNT-like結構。藉由上述雷射照射方式,針對a-C鍍膜條件之影響作探討,發現以C2H2為碳源氣體所鍍出來的a-C,較有利於以雷射直寫方式成長CNT-like結構,此外,提升C2H2/H2流量比,有助於提高雷射照射後,形成的CNT-like結構之品質和其與基座的附著度。
    此外,本研究亦使用有圖形化Ni/Ti催化劑於SiO2/Si上且鍍上a-C之基座,施以雷射照射,以驗證依催化劑的有無來進行選擇性CNT-like結構成長之可行性,於未來應用在形成以a-C為絕緣層和以CNT-like為導電層所構成之奈米連線。


    This research is to form high-density, high-conductivity carbon nanotube-like (CNT-like) structures for nano-interconnect application. The effect of amorphous carbon (a-C) characteristics on CNT-like formation was investigated by using C2H2 or CH4 as a reaction gas for a-C deposition with various C2H2/H2 and CH4/H2 ratios. Besides, the feasibility of selective CNT-like structures formation from the a-C film with patterned catalysts underneath was studied so as to form the nano-interconnect composed of insulating a-C and conducting CNT-like structures.
    In this research, 248 nm KrF excimer laser light was exposed on the substrates with a-C(30 nm)/Ni(10 nm)/Ti(10 nm) on top for 10 s at 1 Hz to form CNT-like structures. Higher quality of CNT-like structures is achieved at laser energy density ramped from 46 mJ/cm2 to 36 mJ/cm2 gradually. The effect of a-C characteristics on the formation of CNT-like structures was investigated at laser condition as above. It was found that C2H2-deposited a-C films were more suitable for formation of CNT-like structures. Increasing the C2H2/H2 ratio can also improve the quality and adhesion of CNT-like structures on substrates.
    The a-C films with patterned Ni/Ti catalyst underneath were deposited on SiO2/Si to verify the feasibility of forming CNT-like structures selectively by laser direct writing for the formation of nano-interconnect consisting of insulating a-C and conducting CNT-like structures.

    Abstract 1 摘 要 2 誌 謝 3 目 錄 5 圖 示 說 明 7 表 格 說 明 10 第一章 緒論 11 第二章 文獻回顧 13 2.1 非晶碳膜 (amorphous carbon, a-C) 13 2.1.1 非晶碳膜的種類與沉積方法 13 2.1.2 以電漿輔助形成非晶碳膜(a-C)之反應機制 15 2.1.3 非晶碳膜(a-C)的特性分析 17 2.1.4 非晶碳膜(a-C)於內連線低κ值絕緣層之應用 18 2.2 雷射直寫法成長奈米碳管(CNT) 20 2.3 奈米碳管內連線 (CNT interconnect) 23 第三章 實驗步驟與儀器簡介 25 3.1 實驗步驟 25 3.1.1 基座準備與清洗 25 3.1.2 非晶碳膜 (amorphous carbon, a-C) 27 3.1.3 雷射直寫成長奈米碳管 29 3.1.4 電性量測 31 3.2 儀器簡介 32 3.2.1 電子迴旋共振化學氣相沉積系統 (ECR-CVD System) 32 3.2.2 紫外光可見光光譜儀 (UV-Vis Spectrometer) 33 3.2.3 霍式轉換紅外光光譜儀 (FTIR Spectrometer) 34 3.2.4 氟化氪準分子雷射 (KrF Excimer Laser) 36 3.2.5 拉曼光譜儀 (Raman Spectrometer) 38 3.2.6 掃描式電子顯微鏡 (Scanning Electron Microscope) 41 3.2.7 穿透式電子顯微鏡 (Transmission Electron Microscopy) 43 第四章 實驗結果與討論 45 4.1 非晶碳膜性質對雷射直寫成長奈米碳管結構之影響 45 4.1.1 鍍膜氣源含氫比例與不同碳源氣體對非晶碳膜特性之影響 46 4.1.2 雷射能量密度最佳化 50 4.1.3 非晶碳膜特性對成長奈米碳管結構之影響 55 4.2 選擇性成長類奈米碳管結構 68 4.2.1 非晶碳膜在無催化劑下經雷射照射後的變化 68 4.2.2 催化劑對選擇性成長類奈米碳管結構之影響 70 4.2.3 藉圖形化定義催化劑基座進行選擇性類奈米碳管結構之成長 72 第五章 結論 75 第六章 未來工作 77 參考文獻 79

    [1] S. Iijima, Nature 354 (1991) 56
    [2] Yao, Z; Kane, C. L.; Dekker, C. Phys. Rev.Lett. 84 (2000) 2491
    [3] Hone, J.; Whitnry, M.; Zettle, A. Synthetic Metals 103 (1999) 2489
    [4] D. Yokoyama, T. Iwasaki, K. Ishimaru, S. Sato, T. Hyakushima, M. Ninei, Y. Awano, and H. Kawarada, Jpn. J. Appl. Phys. Vol. 47 No. 4 (2008) 1985
    [5] M. Katagiri, N. Sakuma, M. Suzuki, T. Sakai, S. Sato, T. Hyakushima, M. Nihei, Y. Awano, Jpn. J. Appl. Phys. Vol. 47 No. 4 (2008) 2024
    [6] A. Kawabata, S. Sato, T. Nozue, T. Hyakushima, M. Norimatsu, M. Mishima, T. Murakami, D. Kondo, K. Asano, M. Ohfuti, H. Kawarada, T. Sakai, M. Nihei, Y. Awano, IITC conference (2008) 237
    [7] S. Sato, T. Hyakushima, M. Nihei, Y. Awano, Appl. Phys. Lett. 91 (2007) 263101
    [8] Y. Awano, IEICE TRANS. ELECTRON. Vol. E89–C No.11 (2006) 1499
    [9] Y. Awano, S. Sato, D. Kondo, M. Ohfuti, A. Kawabata, M. Nihei, N. Yokoyama1, Phys. Stat. Sol. Vol 203 No. 14 (2006) 3611
    [10] M. Horibe, M. Nihei, D. Kondo, A. Kawabata, Y. Awano, Jpn. J. Appl. Phys. 44 7A (2005) 5309
    [11] M. Horibe, M. Nihei, D. Kondo, A. Kawabata, Y. Awano, Jpn. J. Appl. Phys. 43 9A (2004) 6499
    [12] M. Nihei, M. Horibe, A. Kawabata, Y. Awano, Jpn. J. Appl. Phys. 43 4B (2004) 1856
    [13] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, M. Liebau, E. Unger,W. Honlein, Microelectron. Eng. 64 (2002) 399
    [14] G.S. Duesberg, A.P. Graham, M. Liebau, R. Seidel, E. Unger, F. Kreupl, W. Hoenlein, Nano Lett. Vol. 3 No. 2 (2003)
    [15] A.P. Graham, G.S. Duesberg, R. Seidel, M. Liebau, E. Unger, F. Kreupl, W. Honlein, Diamond Rel. Mater. 13 (2004) 1296
    [16] A.P. Graham, G.S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, W. Unger, Apply. Phys. A, 80 (2005) 1141
    [17] A.P. Grahem, G.S. Duesberg, R.V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl, W. Hoenlein, Small 1 4 (2005) 382
    [18] G.S. Duesberg, A.P. Graham, F. Kreupl, M. Liebau, R. Seidel, E. Unger, W. Hoenlein, Diamond Rel. Mater. 13 (2004) 354
    [19] J. Li, Q. Ye, A. Cassell, H.T. Ng, R. Stevens, J. Han, M. Meyyappan, Appl. Phys. Lett. 82 15 (2003) 2491
    [20] J. Robertson, G. Zhong, H. Teig, C. Thomsen, J.H. Warmer, G.A.D. Briggs, U. Dettlaff-Weglikowska, S. Roth, Appl. Phys. Lett. 93 (2008) 163111
    [21] J.C. Coiffic, H. Le Poche, D. Mariolle, N. Chevalier, S. Oliver, M. Fayolle, S. Maitrejean, Microelectron. Eng. 85 (2008)1971
    [22] A.B. Kaul, K.G. Megerian, P. von Allmen, R.L. Baron, Nanotechology 20 (2009) 075303
    [23] T. Xu, Z. Wang, J. Miao, X. Chen, C.M. Tan, Appl. Phys. Lett. 91 (2007) 042108
    [24] T. Iwasaki, R. Morikane, T. Edura, M. Tokuda, K. Tsutsui, Y. Wada, H. Kawarada, Carbon 45 (2007) 2351
    [25] 吳昱璁,國立清華大學 材料科學工程所碩士論文(民國九十六年七月)
    [26] Y.T. Wu, H.C. Su, C.M. Tsai, K.L. Liu, G.D. Chen, R.H. Huang, T.R. Yew, Appl. Phys. Lett. 93, (2008) 023108
    [27] J. Robertson, Prog. Solid State Chem. 21 (1991) 199
    [28] J. Robertson, Adv. Phys. 35 (1986) 317
    [29] M.F. Doemer, R.L. White, MRS Bull. (1996) 28
    [30] A.H. Lettington, Proc. R. Soc. A 342 (1993) 287
    [31] J.D. Kim, K.H. Lee, K.Y. Kim, H. Sugimura, O. Takai, Y. Wu, Y. Inoue, Surf. Coat. Tech. 162 (2003) 135
    [32] J. Robertson, Mat. Sci. Eng. R 37 (2002) 129
    [33] S. Aisenberg, R. Chabot, J. Appl. Phys. 42 (1971) 2953
    [34] F. Jansen, M. Mackonkin, S. Kaplan, S. Hark, J. Vac. Sci. Tech. A 3 (1985) 605
    [35] D.R. McKenzie, Rep. Prog. Phys. 59 (1996) 1611
    [36] A.A. Voevodin, M.S. Donley, Surf. Coat. Tech. 82 (1996) 199
    [37] P. Koidl, C. Wagner, B. Dischler, J. Wagner, M. Ramsteiner, Mater. Sci. Forum 52 (1990) 41
    [38] M. Weiler, K. Lang, E. Li, J. Robertson, Appl. Phys. Lett. 72 (1998) 1314
    [39] S.R.P. Silva, J.D. Carey, R.U.A. Khan, E.G. Gerstner, J.V. Anguita, in: H.S. Nalwa (Ed.), Amorphous Carbon Thin Films, vol. 4, Handbook of Thin Film Materials, Academic Press (2002) 403
    [40] J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15 (1966) 627
    [41] International Technology Roadmap for Semiconductors (ITRS) 2007 edition Interconnect (2007)
    [42] M. Morgen, et al, Am. Rev. Mater. Sci. 30 (2000) 645
    [43] A. Grill, V. Patel, J. Appl. Phys. 85 (1998) 3314
    [44] A. Grill, Diamond Rel. Mater. 10 (2001) 234
    [45] S.P. Louh, I.C. Leu, M.H. Hon, Diamond Rel. Mater 14 (2005) 1000-1004
    [46] S.P. Louh, M.H. Hon, Diamond Rel. Mater. 14 (2005) 1815
    [47] C.H. Lai, W.S. Lai, H.C. Chiue, H.J. Chen, Thin Solid Films 510 (2006) 125
    [48] H. Ishikawa, T. Nozawa, T. Matsuoka, A. Teramato, M. Hirayama, A, T. Ito, T. Ohmi, Jpn. J. Appl. Phys. 47 (2008) 2531
    [49] S.Iijima, T. Ichihashi, Nature 363 (1993) 603
    [50] Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 202 (1998) 1105
    [51] S. Fan, M.G. Chaplin, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dia, Science 283 (1991) 512
    [52] S. Botti, R. Ciardi, L. Asilyan, L. De Dominicis, F. Fabbri, S. Orlanducci, A. Fiori, Chem. Phys. Lett. 400 (2004) 264
    [53] S. Botti, L. Asilyan, R. Ciardi, F. Fabbri, S. Loreti, A. Santoni, S. Orlanducci, Chem. Phys. Lett. 396 (2004) 1
    [54] M. Kusunoki, M. Rakkaku, T. Suzuki, Appl. Phys. Lett. 71 (1997) 2620
    [55] M. Kusunoki, T. Suzuki, T. Hirayama, N. Shibata, Appl. Phys. Lett. 77 (2000) 531
    [56] H. Takikawa, R. Mirano, M. Yatsuki, T. Sakakibara, Jpn. J. Appl. Phys. Part 237 (1998) L187
    [57] J.G. Buijnsters, R. Gago, I. Jimenez, M. Camero, F. Agullo-Rueda, C. Gomez-Aleixandre, J. Appl. Phys. 105 (2009) 093510
    [58] 丁勝懋,”雷射工程導論”修訂第四版,中央圖書出版社(2006)。
    [59] 汪建民,”材料分析”,中國材料科學學會(1998)
    [60] H. Hiura, T. W. Ebbesen, K. Tanigaki, H. Takahashi, Chem. Phys. Lett. 202 (1993) 509
    [61] B. K. Kim, T. A. Grotjohn, Diamond Rel. Mater. 9 (2000) 37
    [62] A.C. Ferrari, J. Robertson, Physical Review B Vol. 61 No. 20 (2000) 14095
    [63] B. Dischler, A. Bubenzer, P. Koidl, Solid State Comun. 48 (1983) 105

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE