簡易檢索 / 詳目顯示

研究生: 陳如亭
論文名稱: 基於知識本體來自動產生對話笑話
Automatic Generation of Dialogue Jokes Based on Ontology Model
指導教授: 蘇豐文
口試委員: 賴尚宏
錢炳全
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 53
中文關鍵詞: 幽默產生知識本體論失諧笑話領域知識
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何讓電腦自動化產生笑話是近年來人工智慧領域研究的一項重要且有趣的課題。這樣的研究與如何自動化產生故事有些類似,但更著重於探討讓機器表達人類幽默情緒的部分。在知識的建構和表達上,我們使用知識本體論(ontology)來描述領域知識(domain knowledge)及常識(common sense),它具有可以清楚表達領域知識中各種關聯和限制的特性。而關於幽默的元素,此篇論文引用了近代認知心理學的「失諧理論」(incongruity theory)以及隨之發展出的「失諧-解困理論」(incongruity-resolution theory)和「反向-合意理論」(opposition-coherence theory)來解釋幽默感的產生。因此,我們設計了一套方法讓兩個代理人在被給予的故事情境中對話,並將對話與目前的領域知識及常識的關聯性網路做配對,藉由網路搜尋法選擇領域知識中具有限制條件的受詞或動詞來做適當的替換,且對話內容不偏離原本故事情境的本質,來製造出失諧的語句。依據此方法,我們在自動產生簡短對話的系統中,使其中一個代理人接收到另一代理人的話語後,說出失諧語句當作回應,藉此來產生短篇對話型笑話。在5個不同領域中生成了13組對話(其中5組未加上限制條件作為對照組),以100個受測者進行問卷調查的結果顯示了未加入此方法前所產生的對話幽默程度只有15%以下,加入了領域知識的限制條件來產生對話後,對話的幽默程度平均提高至57%,可見此方法確實會營造出具有幽默感的對話內容。


    誌謝 i 摘要 ii Abstract iii 目錄 iv 表目錄 vii 圖目錄 viii 1緒論 1 1.1幽默的定義 2 1.1.1外在的刺激 2 1.1.2接收刺激的理解過程 2 1.1.3幽默感產生後的外顯行為 6 1.2知識本體 7 1.2.1類別(Class) 7 1.2.2屬性(Properties/roles/slots) 8 1.2.3屬性上的限制(Restrictions on slots/facets/role 8 restrictions) 8 2文獻探討 9 3研究方法 12 3.1系統架構 13 3.1.1故事情境 13 3.1.2領域知識與常識 15 3.1.3信念 17 3.1.4起始事件 18 3.1.5代理人 18 3.2執行流程 19 3.2.1起始事件 19 3.2.2代理人一動作 19 3.2.3代理人二動作 19 3.3輸出 26 3.4演算法 26 3.5範例 29 3.5.1例一 29 3.5.2例二 34 4實驗和評估 36 4.1未替換限制 38 4.2替換限制條件 39 5結論 44 參考文獻 46 附錄一 範例一利用到的領域知識 50 附錄二 十三組笑話 51

    一、中文部分
    1. 陳學志. (1991). " 幽默理解" 的認知歷程 (Doctoral dissertation, National Taiwan University Graduate Institute of Psychology.).

    二、英文部分
    1. Attardo, S. (1994). Linguistic theories of humor (Vol. 1). Walter de Gruyter.
    2. Beattie, J. (1776). An essay on laughter, and ludicrous composition. Essays. William Creech, Edinburgh.
    3. B ergen, B., & Binsted, K. (2003). The cognitive linguistics of scalar humor.Language, culture, and mind, 79-92.
    4. Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999). What are ontologies, and why do we need them?. Intelligent Systems and Their Applications, IEEE, 14(1), 20-26.
    5. Dybala, P., Ptaszynski, M., Maciejewski, J., Takahashi, M., Rzepka, R., & Araki, K. (2010). Multiagent system for joke generation: Humor and emotions combined in human-agent conversation. Journal of Ambient Intelligence and Smart Environments, 2(1), 31-48.
    6. Freud, S. (1966). Jokes and their relation to the unconscious( J. Strachey, Trans.). London: Routledge Classics.(Original work published 1905)
    7. Gentner, D., & Collins, A. (1981). Studies of inference from lack of knowledge. Memory & Cognition, 9(4), 434-443.
    8. Godkewitsch, M. (1976). Physiological and verbal indices of arousal in rated humour. Chapman and Foot, 117-138.
    9. Kiddon, C., & Brun, Y. (2011). That's what she said: Double entendre identification. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, USA, 2, 89-94.
    10. In ACL (Short Papers) (pp. 89-94).
    11. McGhee, P. E. (1979). Humor, its origin and development (p. 208). San Francisco: WH Freeman
    12. McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology language overview. W3C recommendation. Retrieved from http://www.w3.org/TR/owl-features
    13. Nazareth, J. (1988). The Psychology of Military Humour. Lancer Publishers.
    14. Nerhardt, G. (1970). Humor and inclination to laugh: Emotional reactions to stimuli of different divergence from a range of expectancy. Scandinavian Journal of Psychology, 11(1), 185-195.
    15. Nerhardt, G. Ã. (1976). Incongruity and funniness: Towards a new descriptive model.
    16. Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology.
    17. Riedl, M. O. (2003). Actor conference: Character-focused narrative planning.
    18. Schultz, T. R., & Horibe, F. (1974). Development of the appreciation of verbal jokes. Developmental Psychology, 10(1), 13.
    19. Stark, J., Binsted, K., & Bergen, B. (2005). Disjunctor selection for one-line jokes. In Intelligent Technologies for Interactive Entertainment (pp. 174-182). Springer Berlin Heidelberg.
    20. Stock, O., & Strapparava, C. (2005, June). Hahacronym: A computational humor system. In Proceedings of the ACL 2005 on Interactive poster and demonstration sessions (pp. 113-116). Association for Computational Linguistics.
    21. Suls, J. (1983). Cognitive processes in humor appreciation. In Handbook of humor research (pp. 39-57). Springer New York.
    22. Suls, J. M. (1972). A two-stage model for the appreciation of jokes and cartoons: An information-processing analysis. The psychology of humor: Theoretical perspectives and empirical issues, 81-100.
    23. Tinholt, H. W., & Nijholt, A. (2007). Computational humour: Utilizing cross-reference ambiguity for conversational jokes. In Applications of Fuzzy Sets Theory (pp. 477-483). Springer Berlin Heidelberg.
    24. Wang, Y. (2011). On cognitive models of causal inferences and causation networks. International Journal of Software Science and Computational Intelligence (IJSSCI), 3(1), 50-60.
    25. Ware, S. G., & Young, R. M. (2010, October). Modeling Narrative Conflict to Generate Interesting Stories. In AIIDE.
    26. Wilson, C. P. (1979). Jokes: Form, content, use and function. European Association of Experimental Social Psychology by Academic Press.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE