簡易檢索 / 詳目顯示

研究生: 吳友仁
Yu-Jen Wu
論文名稱: 支援企業客服中心運作之自動問答與知識摘要技術
Development of Automatic Question Answering and Knowledge Summarization Methodologies for Call Center Services
指導教授: 侯建良
Jiang-Liang Hou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 181
中文關鍵詞: 自動摘要自動問答常見問答客服中心顧客關係管理
外文關鍵詞: Automatic Summarization, Automatic Question-Answering, FAQ, Contact Center, Customer Relationship Management (CRM)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著資訊科技之快速發展,企業與顧客間之互動媒介已漸形複雜;傳統人際間之客服互動關係,已無法應付目前快速變遷且高度互動之環境。為提高客服效率、降低作業成本及人事費用,客服中心電子化已成必然趨勢。因此,企業體逐漸將專業人員所具有之知識與客服人員之客服經驗轉化為數位資訊型態並儲存之。由於企業體建置客服中心及其運作成本日益增高,且常見問題集資訊過量及重複等問題造成問答檢索之困難度提昇,若以一般傳統之客服中心運作模式回覆客戶所提出之疑問,企業需面臨建置成本、服務品質及運營管理等層面之經營壓力,其除需承擔回覆客戶所提之問題需耗費許多專業與客服人力之問題外,尚可能因諮詢(客服)人員之疏忽,造成問題之解答品質不一致等現象,進而造成企業形象降低或甚至流失客戶。
    有鑑於此,本論文提出一套整合「自動問答」與「知識摘要」之方法論與技術,此整合模式之推論邏輯乃包含「常見問答集/領域關鍵字/重要詞彙之建立」、「推論目標問題與常見問題之相似程度」、「結構化候選答案集之組合義元」、「解析義元資訊含量」、「計算義元間關聯性」及「串聯摘要義元鏈」等主題。其基本原理乃首先透過擷取關鍵字並配合貝氏定理,推論目標問題與常見問題相似性;再透過擷取各候選答案集內義元之五項特徵值與其他義元之關聯性,挑選「新候選答案集義元組合結構圖」內最高權重路徑之義元,逐一串聯成摘要義元鏈,而形成目標問題之回覆解答。本研究所發展之「智慧型問題自動回覆方法論」,主要乃針對使用者所提問題(目標問題)及根據訓練資料(常見問答集),透過詢答機制決定可能之候選答案摘要,以自動回覆予使用者;最後乃以物流公司之物流作業諮詢為案例,驗證本研究方法論之可行性。於系統成效方面,自動問答功能之準確率績效約為58.47%,而知識摘要功能之召回率績效約為54.38%。就系統整體功能(包含自動問答與知識摘要兩大功能)而言,其平均召回率為31.80%、平均精確率為15.37%、平均可閱讀性為83.28%。故以具體研究成果而論,在維持一定系統績效之要求下,本研究成功地整合「自動問答」與「知識摘要」兩項技術以提供詢答服務。綜合而言,本研究之目標乃期望能透過此模式改善人與電子媒介間之互動問答關係,故可將其應用於客服中心之客戶問題回覆服務,以落實更有效之顧客關係管理。


    With regard to the drastic development of information technologies, the interaction channels between enterprises and customers are more and more complicated. Many enterprises have realized that electronic CRM mechanisms can provide efficient and cost-effective customer services. In addition to organize the Frequently Asked Questions (FAQs) of customers, enterprises should gradually extract amd maintain the customer service knowledge in the electronic contact centers. Considering the operation cost and service quality of contact centers, the traditional service mechanism for cutomer queries should be re-engineered to reduced the human efforts required for question answering.
    This paper proposes an integrated model with automatic question-answering and knowledge summarization mechanisms. The integrated model consists of six main phases including construction of FAQs and keywords, question correlation analysis, meaning unit (MU) analysis, information intensity analysis, MU correlation analysis and MU linkage. The basic idea of the model is to explore the correlation between the target question and FAQs based on the keyword distribution. Based on the derived correlation, the candidate answers of the target question can be determined. Furthermore, according to the information intensity of MUs in the candidate answers, critical MUs are extracted and linked as the final answer to the target question. By applying of the automatic question-answering mechaism in the contact centers, interaction relationship between customers and contact centers can be improved and long-term customer relationship can be guaranteed. Moreover, the proposed approach can also be incorporated into the e-training systems for efficient query-replying and knowledge management systems for accurate information retrieval.

    中文摘要 I 英文摘要 II 誌謝辭 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章、研究背景 1 1.1研究動機與目的 1 1.2研究方法與步驟 3 1.3研究定位 6 第二章、文獻回顧 9 2.1資訊處理技術 9 2.1.1資訊擷取技術 10 2.1.2資訊過濾技術 13 2.1.3資訊檢索技術 14 2.1.4小結 17 2.2自動詢答機制 18 2.2.1常見問題集查詢技術 19 2.2.2自動詢答技術 20 2.2.3自動問答探索技術 24 2.2.4小結 26 2.3知識文件摘要 27 2.3.1知識文件摘要發展歷史 28 2.3.2自動資訊摘要基本分類 29 2.3.3文件摘要相關方法論之研究 31 2.3.4小結 41 2.4結語 42 第三章、自動問答機制與知識摘要技術開發 43 3.1 自動問答機制模組 46 3.1.1 分析關鍵字與常見問題 46 3.1.2 歸納目標問題與常見問題之相似性 51 3.2知識內容自動摘要模組 56 3.2.1形成候選答案 57 3.2.2解析義元資訊含量 69 3.2.3 計算義元間關聯性 91 3.2.4 串接摘要義元鏈 93 3.3 小結 100 第四章、雛形系統架構與規劃 102 4.1自動問答與知識摘要模式 102 4.2系統功能架構 104 4.3資料模式定義 107 4.4系統流程 111 4.4.1系統操作流程 112 4.4.2系統資料流程 122 4.5系統開發工具 123 第五章、系統開發與案例驗證 126 5.1 系統操作說明 126 5.1.1 輸入資料之維護 128 5.1.2各功能模組運作流程 140 5.1.3 摘要義元鏈之形成 144 5.2 目標問題對應解答案例驗證與分析 146 5.2.1 驗證案例說明 146 5.2.2 第一程序系統績效分析 150 5.2.3 第二程序驗證結果分析 155 5.2.4 目標問題具體程度之評估 158 5.2.5 研究成果分析 159 5.3自動問答與知識摘要之成效 161 第六章、結論與未來展望 170 參考文獻 173

    1.Abe, K., Taketa, T. and Nunokawa, H., 2000, “An idea of the agent-based information recommendation system using the statistical information,” 7th International Conference on Parallel and Distributed Systems: Workshops, pp. 143-146.
    2.Aggarwal, S., Hung, F. and Meng, W., 1998, “WIRE-a WWW-based information retrieval and extraction system,” IEEE Database and Expert Systems Applications, pp. 887 -892.
    3.Allan, J., Gupta, R. and Khandelwal, V., 2001, “Temporal summaries of news topics,” Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 10-18.
    4.Aone, C., Okurowski, M. E, Gorlinsky, J. and Larsen, B., 1999, “A trainable summarizer with knowledge acquired from robust NLP techniques,” Advances in Automated Text Summarization, Massachusetts: MIT Press, pp. 71-80.
    5.Appelt, D. E. and Israel, D. J., 1999, “Introduction to information extraction technology,” International Joint Conference on Artificial Intelligence (http://ranger.uta.edu/~alp/cse6331/ixtutorial.pdf).
    6.Azzam, S., Humphreys, K. and Gaizauskas, R., 1999, “Using co-reference chains for text summarization,” Proceedings of the ACL'99 Workshop on Co-reference and its Applications, pp. 77-84.
    7.Barzilay, R. and Elhadad, M., 1997, “Using lexical chains for text summarization,” Proceedings of the Workshop on Intelligent Scalable Text Summarization, pp. 10-17.
    8.Barzilay, R., Elhadad, N. and McKeown, K. R., 2002, “Inferring strategies for sentence ordering in multidocument news summarization,” Journal of Artificial Intelligence Research, Vo1. 17, pp. 33-55.
    9.Berger, A., Caruana, R., Cohn, D., Freitag, D. and Mittal, V., 2000, “Bridging the lexical chasm: statistical approaches to answer-finding,” Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 192-199.
    10.Burke, R. Hammond, K. Kulyukin, V., 1997, “Natural language processing in the FAQ finder system: Result and prospects,” 1997 AAAI Spring Symposium Technical Report, Vol. 10, pp. 97.
    11.Capocci, A., Slanina, F. and Zhang, Y. C., 2003, “Filtering information in a connected network,” Physica A, Vol. 317, No. 1, pp. 259-269.
    12.Chien, L. F., 1998, “PAT-Tree-based keyword extraction for Chinese information retrieval,” Proceedings of the 1997 ACM SIGIR, pp. 50-58.
    13.Chowdhury, G. G., 1999, “Introduction to modern information retrieval,” London: Library Association Publishing, pp. 1.
    14.Edmundson, H., 1969, “New methods in automatic abstracting,” Journal of ACM, Vol. 12, No. 2, pp. 264-285.
    15.Embley, D. W., Jiang, Y. and Ng, Y. K., 1999, “Record-boundary discovery in web documents,” Proceeding of the 1999 ACM SIGMOD International Conference on Management of Data, pp. 467-478.
    16.Filman, R. E. and Pant, S., 1998, “Search the internet,” IEEE Internet Computing, Vol. 2, No. 4, pp. 21-23.
    17.Foltz P. W. and Dumais, T. S., 1992, “Personalized information delivery: An analysis of information filtering methods,” Communications of the ACM, Vol. 35, No. 12, pp. 51-60.
    18.Gaizauskas, R. and Wilks Y., 1998, “Information extraction: Beyond document retrieval,” Computational Linguistics and Chinese Language Processing, Vol. 3, No. 2, pp. 17-60.
    19.Gaizauskas, R. and Humphreys, K., 2000, “A combined IR/NLP approach to question answering against large text collections,” Proceedings of RIAO 2000: Content-Based Multimedia Information Access, pp. 21-23.
    20.Goldstein, J., Kantrowitz, M. V., Mittal, O. and Carbonell, J., 1999, “Text documents: Sentence selection and evaluation metrics,” Proceedings of the 22th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 121-128.
    21.Greenberg, I. and Garber, L., 1999, “Searching for new search technologies,” Computer, Vol. 32, No. 8, pp. 4-11.
    22.Guan, T. and Wong, K. F., 1999, “KPS: A web information mining algorithm,” The Eighth International World Wide Web Conference, pp. 1495-1507.
    23.Guduvada, V. N., Raghavan, V. V., Ggosky, W. I. and Kasanagottu R., 1997, “Information retrieval on the world wide web,” IEEE Internet Computing, Vol. 1, No. 5, pp. 58-68.
    24.Hammond, K., Burke, R., Martin, C. and Lytinen, S., 1995, “ FAQ finder: A case-based approach to knowledge navigation,” Proceedings of the 11th Conference on Artificial Intelligence for Application, pp. 80-86.
    25.Hirschman, L. and Gaizauskas, R., 2001, Natural Language Question Answering: The View from Here, Cambridge University Press, pp. 15.
    26.Hovy, E. and Lin, C. Y., 1999, “Automated text summarization in SUMMARIST,” Advances in Automated Text Summarization, Massachusetts: MIT Press, pp. 81-94.
    27.Jones, K. S. and Willet, P., 1997, “Readings in Information retrieval,” CA: Morgan Kaufmann Publishers, pp. 1-7.
    28.Kim, J. H., Kim, J. H. and Hwang, D., 2000, “Korean text summarization using an aggregate similarity,” Proceedings of the 5th International Workshop Information Retrieval with Asian Languages, pp. 111-118.
    29.Kupiec, J., Pedersen, J. and Chen, F., 1995, “A trainable document summarizer,” Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 68-73.
    30.Laszlo, M., Kosseim, L., Lapalme, G., 2000, “Goal-driven answer extraction,” The Ninth Text Retrieval Conference, pp. 24-28.
    31.Lee, C. S., Chen, Y. J. and Jian, Z. W., 2003, “Ontology-based fuzzy event extraction agent for Chinese e-news summarization,” Expert Systems with Applications, Vol. 25, No. 3, pp. 431-447.
    32.Li, Y., 1998, “Toward a qualitative search engine,” IEEE Internet Computing, Vol. 2, No 4, pp. 24-29.
    33.Light, M., Mann, G., Riloff, E. and Breck, E., 2001, “Analyses for elucidating current question answering technology,” Journal of Natural Language Engineering, Vol. 7, No. 4, pp.15-18.
    34.Luhn, H. P., 1958, “The automatic creation of literature abstracts,” IBM Journal of Research and Development, pp. 159-165.
    35.Mani, I. and Maybury, M., 1999, Advances in Automated Text Summarization, Massachusetts: MIT Press, pp. 10-15.
    36.McKeown, K. and Radev, D. R., 1995, “Generating summaries of multiple news articles,” Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 74-82.
    37.Miike, S., Itoh, E., Ono, K. and Sumita, K., 1994, “A full text retrieval system with dynamic abstract generation function,” Proceedings of the 17th annual international ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 152-161.
    38.Mitra, M., Singhal, A. and Buckley, C., 1997, “Automatic text summarization by paragraph extraction,” Applied Natural Language Processing / European Chapter of the Association for Computational Linguistics 97 Workshop on Intelligent Scalable Text Summarization, pp.31-36.
    39.Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea, R., Goodrum, R., Girju, R. and Rus, V., 1999, “LASSO: A tool for surfing the answer net,” The Eighth Text Retrieval Conference, pp. 175.
    40.Ong, T. H. and Chen, H., 1999, “Updateable PAT-Tree approach to Chinese key phrase extraction using mutual information: A linguistic foundation for knowledge management,” The 2nd Asian Digital Libraries Conference, pp.63-84.
    41.Prager, J., Brown, E., Coden, A. and Radev, D., 2000, “Question-answering by predictive annotation,” Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 184-191.
    42.Radev, D. Fan, W., Qi, H., Wu, H. and Grewal, A., 2002, “Probabilistic question answering,” Proceedings of the 11th World Wide Web Conference, pp. 408-419.
    43.Radve, D., Qi, H., Zheng, Z. B., Sasha, G., Zhang, Z., Fan, W. and Prager, J., 2001, “Mining the web for answers to natural language questions,” Proceedings of the 10th International Conference on Information and Knowledge Management, pp. 143-150.
    44.Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J., 1994, “GroupLens: An open architecture for collaborative filtering of netnews,” Proceedings of the Conference on Computer Supported Cooperative Work, pp. 175-186.
    45.Ricardo, B. Y. and Berthier, R. N., 1999, Modern Information Retrieval, Addison-Wesley Longman, pp. 118-123.
    46.Salton, G., 1989, Automatic Text Processing: The Transformation, Analysis and Retrieval of Information by Computer Reading, MA: Addison Wesley, pp. 327-337.
    47.Salton, G., Singhal, A., Mitra, M. and Buckley, C., 1997, “Automatic text structuring and summarization,” Information Processing and Management, Vol. 33, No. 2, pp. 193-207.
    48.Salton, G., Wang, A. and Yang, C. S., 1975,“A vector space model for automatic indexing”, Communications of the ACM, Vol. 11, pp. 613-620.
    49.Sarwar, B. M., Konstan, J. A., Borchers, A., Herlocker, J., Miller, B. and Riedl, J., 1998, “Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system,” Proceedings of the ACM Conference on Computer Supported Cooperative Work, pp. 345.
    50.Scott, S., Gaizauskas, R., 2000, “University of Sheffield TREC-9 Q&A System,” The Ninth Text Retrieval Conference, pp. 34-37.
    51.Shardanand, U. and Pattie, M., 1995, “Social information filtering: Algorithms for automating ‘Word of Mouth’,” Proceedings of CHI 95 ACM, pp. 210-217.
    52.Tatemrua, J. and Keisuke, S., 2000, “Design discovery for social recommendation of web graphics,” International Conference on Systems, Man and Cybernetics, Vol. 1, pp. 49-54.
    53.Terveen, L., Will, H., Amento, B., McDonald, D. and Creter, J., 1997,“PHOAKS: A system for sharing recommendations,” Communication of the ACM, pp. 59-62.
    54.Voorhees, E., 1999, “The TREC-8 question answering track evaluation," Proceedings of TREC-8, pp. 23-37.
    55.Wong, K. F. and Li, W. J., 1998, “Intelligent Chinese information retrieval: Why is it so Difficult?,” Proceedings of the First Asia Digital Library Workshop, pp. 47-56.
    56.Zechner, K., 1997, “A literature survey on information extraction and text summarization,” Term paper, Carnegie Mellon University.
    57.牛維娟,2003,「應用於USENET 之Q&A 系統之研究與設計」,碩士論文(指導教授:李錫捷),元智大學資訊管理研究所。
    58.王亭雅,2003,「網頁搜尋引擎問答」,碩士論文(指導教授:吳昇),中正大學資訊工程研究所。
    59.何遠,2003,「中文口語文件自動摘要之初步研究」,碩士論文(指導教授:李琳山),臺灣大學電信工程學研究所。
    60.吳志鴻,2001,「應用關鍵頁搜尋及知識分類技術於Q&A系統之研究與設計」,碩士論文(指導教授:李錫捷),元智大學資訊管理研究所。
    61.吳郁瑩,1999,「網路中文超文件自動摘要之研究與實作」,碩士論文(指導教授:黃純敏),雲林科技大學資訊管理研究所。
    62.吳家威,2003,「自動摘要方法之研究與探討」,碩士論文(指導教授:劉昭麟),政治大學資訊科學學系。
    63.吳潮崇,2002,「線上新聞之自動摘要系統」,碩士論文(指導教授:王振興及林敏勝),台北科技大學電機工程系碩士班。
    64.李坤霖,2002,「網際網路FAQ檢索中意圖萃取及語意比對之研究」,碩士論文(指導教授:吳宗憲),國立成功大學資訊工程研究所。
    65.李祥賓,2001,「新聞文件摘要之研究」,碩士論文(指導教授:陳信希),東吳大學資訊科學系。
    66.沈天佐,2003,「以網際網路內容為基礎之問答系統“為什麼”問句之研究」,台灣大學資訊工程研究所。
    67.沈健誠,2001,「多篇文件自動摘要系統」,碩士論文(指導教授:張俊盛),清華大學資訊工程學系。
    68.林仁貴,2004,「以RDF規範為基礎之知識文件內容與結構解析技術」,碩士論文(指導教授:侯建良),清華大學工業工程與工程管理研究所。
    69.林志龍,2003,「關聯性字組在文件摘要上的探討」,碩士論文(指導教授:張嘉惠),中央大學資訊工程研究所。
    70.邱中人,2000,「中文新聞摘要」,碩士論文(指導教授:張智星及張俊盛),清華大學資訊工程學系。
    71.邱立豐,2002,「互動式概念查詢應用於網路文件自動摘要之效益」,碩士論文(指導教授:黃純敏),雲林科技大學資訊管理系碩士班。
    72.姚邦佳,2002,「MP3音樂物件的自動化摘要」,碩士論文(指導教授:劉志俊),中華大學資訊工程研究所。
    73.范世鎮,2003,「MPEG-4電影資料之內涵式摘要擷取與角色分析」,碩士論文(指導教授:劉志俊),中華大學資訊工程研究所。
    74.徐銘忠,2004,「植基於本體論之文件摘要系統之研究-以中文股市新聞為例」,碩士論文(指導教授:呂芳懌),東海大學資訊工程與科學系。
    75.孫銘聰,2003,「啟發式電子化文件權限推論模式與技術構建」,碩士論文(指導教授:侯建良),清華大學工業工程與工程管理學系。
    76.翁鴻加,2001,「多文件摘要一些新技術及評估模型之建立」,碩士論文(指導教授:陳信希),臺灣大學資訊工程學研究所。
    77.張如瑩,2001,「多語系平行關鍵頁搜尋引擎之設計與建構」,碩士論文(指導教授:李錫捷)元智大學資訊管理研究所。
    78.許加文,1999,「網際網路搜尋過濾系統[一個「關鍵頁」超搜尋智慧型代理引擎]」,碩士論文(指導教授:李錫捷)元智大學資訊管理研究所,
    79.陳光華, 1996,「資訊檢索查詢之自然語言處理」,中國圖書館學會會報,第57期,頁141-153。(http://www.lis.ntu.edu.tw/~khchen/writtings/pdf/blac1996.pdf)
    80.陳光華,1997,「資訊的組織與擷取」,台大圖書館學刊,第十二期,頁127-142。
    81.陳光華,1999,「資訊檢索技術之核心」,大學圖書館,第三卷,第一期,頁1-12。(http://lips.lis.ntu.edu.tw/khchen/writtings/pdf/ulq1999.pdf)
    82.陳信希,2003,「國立台灣大學自然語言處理實驗室簡介」,通訊ACLCLP,第十四卷,第五期,第12頁。
    83.陳雅絹,2003,「基於Ontology之模糊代理人於中文新聞文件摘要技術之研究」,碩士論文(指導教授:李健興、陳宗禧),長榮大學經營管理研究所。
    84.陳意芬,2003,「概念式自動問答探索系統」,碩士論文(指導教授:柯皓仁及楊維邦),國立交通大學資訊科學研究所。
    85.陳鈺瑾,2000,「可調式之中文文件自動摘要」,碩士論文(指導教授:張俊盛),清華大學資訊工程學系。
    86.黃士銘,2003,「XML為基個人化資訊搜尋架構之研究----以人力網站為例」,碩士論文(指導教授:劉家驊及蔡向榮),國防管理學院國防資訊研究所。
    87.黃思萱,2002,「以關鍵詞分群為基礎的多文件摘要」,碩士論文(指導教授:徐俊傑),台灣科技大學資訊管理系。
    88.黃清俊,2003,「網路論壇知識轉換之實證研究」碩士論文(指導教授:陶幼慧),義守大學資訊管理學系。
    89.黃思瑋,2003,「平行搜尋引擎於蛋白質交互作用文獻之應用」,碩士論文(指導教授:李錫捷),元智大學資訊管理研究所。
    90.黃純敏、吳郁瑩,1999,「網路文件自動摘要」,台灣區網際網路研討會TANET’99,第13-18頁。
    91.黃聖傑,1999,「多文件自動摘要方法研究」,碩士論文(指導教授:陳信希),臺灣大學資訊工程學研究所。
    92.詹權恩,2004,「以詞彙關聯性詞庫為基礎之文件關鍵字擷取模式」,碩士論文(指導教授:侯建良),清華大學工業工程與工程管理學系。
    93.楊宸彥,2002,「運用剖析概念圖進行中文詢答之研究」,碩士論文(指導教授:陳信希),台灣大學資訊工程研究所。
    94.楊敦淇,2003,「應用相關資訊回饋於貝氏混合式機率檢索模型」,碩士論文(指導教授:簡仁宗),成功大學資訊工程學系。
    95.葉鎮源,2002,「文件自動化摘要方法之研究及其在中文文件的應用」,碩士論文(指導教授:柯皓仁及楊維邦),交通大學資訊科學系。
    96.詹權恩,2004,「以詞彙關聯性為基礎之文件關鍵字擷取模式」,碩士論文(指導教授:侯建良),清華大學工業工程與工程管理學系。
    97.歐陽彥隆,2001,「電信服務業務FAQ查詢系統之研製」,碩士論文(指導教授:梁婷),交通大學資訊科學系。
    98.蔡純純,2003,「中文新聞文件空間資訊擷取之研究—以火災、搶劫、車禍事件為例」,碩士論文(指導教授:朱子豪),台灣大學地理環境資源學研究所。
    99.蔡錦和,2001,「表格資料探勘及其在問答系統之應用」,碩士論文(指導教授:陳信希),台灣大學資訊工程研究所。
    100.賴育昇,2002,「自然語言處理於網際網路常用問答集檢索之研究」,博士論文(指導教授:吳宗憲),國立成功大學資訊工程學系。
    101.賴昌彥,1999,「科技政策網站內容分析之研究」,碩士論文(指導教授:劉文卿),政治大學資訊管理學系研究所
    102.蘇哲君,2001,「中英雙語多文件自動摘要系統研究」,博士論文(指導教授:陳信希),臺灣大學資訊工程學研究所

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE