研究生: |
孔維瑩 Kung, Wei-Ying |
---|---|
論文名稱: |
Ergonomics Evaluation of the Depth Effect on Autostereoscopic Displays 裸眼式立體顯示器深度效應之人因評估 |
指導教授: |
黃雪玲
Hwang, Sheue-Ling |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 裸眼立體顯示器 、交錯殘影閾值 、交錯殘影閾值 、人因評估 |
外文關鍵詞: | autosterescopic display, comfortable depth, depth of field, crosstalk threshold |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The big difference between the flat-panel and 3D stereo display is that 3D displays give a sensation of depth, offering a wholly new viewing experience. However, most of the Human Factor researches of 3D displays are regarding visual fatigue, while very few studies deal with the depth perception.
This research focused on free-viewing autostereoscopic displays which have been widely sold in the market, including two major types: parallax barrier type and 2D+D lenticular type which based on 2D plus depth map format. By using visual assessment method, this research compared the depth representation capabilities in different locations of the screen, under different brightness level based on perceiving minimum crosstalk, finding out the comfortable depth limit of different displays.
The result of this research showed that brightness could affect comfortable depth limit, especially on higher brightness. In addition, there was no significant difference in any location of the screen, thus, an autostereoscopic display had a uniform depth of field under same brightness level. Furthermore, this research established a visual comfort table of depth limit for both types of display.
The comfortable depth limit could be applied in many aspects, such as entertainments, content design and manufacturing. We can improve stereo image quality within the comfortable depth range of human eyes. In manufacturing, the depth representation capabilities of different 3D displays could be found by the method which this research offered, and the max depth of 3D displays could be defined using the comfortable depth limit.
3D立體顯示器與ㄧ般2D顯示器最大的不同在於其提供了立體的觀感,賦予我們嶄新的視覺享受,而此種立體觀感來自於人類的深度知覺。目前對於3D立體顯示器關於人因的研究多集中於視覺疲勞部分,深度方面的研究甚少。
本研究著重於裸眼式立體顯示器,評估市售的主要兩款類型:欄柵式及透鏡式立體顯示器。以人因的視覺評估方法比較立體顯示器在不同類型、不同亮度及螢幕不同位置上,其深度的呈現能力,找出人眼所感知之舒適深度的範圍及界限。
本研究的結果指出亮度會影響立體顯示器的舒適深度界限,尤其於高亮度時。螢幕上各位置的深度呈現能力相當,表示立體顯示器具有均勻的深度空間。最後,本研究建立了一個視覺舒適度與深度的對照表,可用視覺舒適度滿足多少百分比的人對應出立體顯示器的舒適深度上限。
人眼對立體顯示器的舒適深度範圍可應用於娛樂、影像設計、製造等各層面。藉由立體顯示器的舒適深度界限,可在人眼適合觀看的深度內開發出達到最好立體影像品質之方法;於製造方面,立體顯示器的深度呈現能力可藉由本研究所提供的方法來量測,以舒適深度界限來定義顯示器的最大深度。
3D Consortium. from http://www.3dc.gr.jp/english/index.html
3D@Home Consortium (2008). from http://www.3dinthehome.org/index.html
Berns, R. S. (2000 ). Billmeyer and Saltzman's Principles of Color Technology (3 ed.). New York: John Wiley & Sons.
Cheng, I., & Boulanger, P. (2005 ). A 3D Perceptual Metric using Just-Noticeable-Difference. Paper presented at the Eurographics short presentations.
Depth of field - Wikipedia. from http://en.wikipedia.org/wiki/Depth_of_field
Dodgson, N. A. (2005). Autostereoscopic 3D Displays. IEEE Computer Society, 31-36.
Hill, L., & Jacobs, A. (2006). 3-D Liquid Crystal Displays and Their Applications. Proceedings of the IEEE, 49, 575-590.
Holliman, N. (2003). 3D Display Systems. In J. P. Dakin & R. G. W. Brown (Eds.), Handbook of Optoelectronics.
Howard, I. P. (2004). Depth Perception. In H. Pashler & S. Yantis (Eds.), Stevens' Handbook of Experimental Psychology, Volume 1, Sensation and Perception. (3rd ed.).
Huang, K. C. (2004). 八十九年度產業關鍵技術引進計畫審查三次元量測與顯示前瞻技術合作開發計畫, from http://ace136.auto.fcu.edu.tw/plan4/93web/3D.files/slide0051.htm
I-art Croporation. from http://www.iart3d.com/TC/Products_TC/Autostereoscopic%20Display/Auto3D%20Display_TC.htm
Jones, G., Lee, D., Holliman, N., & Ezra, D. (2001). Controlling Perceived Depth in Stereoscopic Images. Proceedings of the SPIE, 4297A.
Kaptein, R., & Heynderickx, I. (2007). Effect of Crosstalk in Multi-View Autostereoscopic 3D Displays on Perceived Image Quality. Paper presented at the SID 07 DIGEST.
Kawai, T. (2002). 3D Displays and Applications. Displays, 23, 49-56.
Ko, Y. Y. (2007). Human Factors Assessment on Display Type and Viewing Angle of Stereoscopic Displays. National Tsing Hua University Hsin Chu.
Kooi, F. L., & Toet, A. (2004). Visual Comfort of Binocular and 3D Displays. Displays, 25, 99-108.
Mania, K., Adelstein, B. D., Ellis, S. R., & Hill, M. I. (2004). Perceptual Sensitivity to Head Tracking Latency in Virtual Environments with Varying Degrees of Scene Complexity. ACM Siggraph Symposium on Applied Perception in Graphics and Visualization,, 39-47.
Matusik, W., Forlines, C., & Pfister, H. (2008). Multiview User Interfaces with an Automultiscopic Display Paper presented at the Advanced Visual Interface 2008.
Meesters, L. M. J., IJsselsteijn, W. A., & Seuntiëns, P. J. H. (2004). A Survey of Perceptual Evaluations and Requirements of Three-Dimensional TV. IEEE Transactions on Circuits and Systems for Video Technology, 14(3), 381-391.
Patterson, R., Winterbottom, M. D., & Pierce, B. J. (2006). Perceptual Issues in the Use of Head-Mounted Visual Displays. Human Factors, 48(3), 555-572.
Plumert, J. M., Kearney, J. K., Cremer, J. F., & Recker, K. (2005). Distance Perception in Real and Virtual Environments. ACM Transactions on Applied Perception, 2(3), 216-233.
Rainbow Symphony, Inc. (2008). from http://www.rainbowsymphonystore.com/3dglasses.html
Rambli, D. R., & Kalawskyohaya, R. S. (2006). Distance Estimations In Static Images: Does Viewing Distance Matter? Paper presented at the CHINZ '06, Christchurch, New Zealand.
Sanders, M. S., & McCormick., E. J. (1992). Human factors in engineering and design (7 ed.): McGRAW-HILL, INC.
Seuntiens, P. J. H., Meesters, L. M. J., & IJsselsteijn, W. A. (2005). Perceptual attributes of crosstalk in 3D images. Dispalys, 26, 177-183.
Shang, H., & Bishop, I. D. (2000). Visual Thresholds for Detection, Recognition and Visual impact in Landscape settings. Journal of Environmental Psychology, 20, 125-140.
Siegel, M., & Nagata, S. (2000). Just Enough Reality: Comfortable 3D Viewing via Microstereopsis. IEEE Transactions on Circuits and Systems for Video Technology, 10(03), 387-396.
Son, J.-Y., & Javidi, B. (2005). Three-Dimensional Imaging Methods Based on Multiview Images. Journal of Display Technology, 1, 125-140.
Stanney, K. M. (2002). Handbook of Virtual Environments: Design, Implementation, and Applicationspp. 1232).
Swan, J. E., Jones, A., Kolstad, E., Livingston, M. A., & Smallman, H. S. (2007). Egocentric depth judgments in optical, see-through augmented reality. IEEE transactions on visualization and computer graphics, 13, 429-442.
Tsai, C.-H., Chen, W.-L., & Hsu, W.-L. (2008). The Pursuit of High-Definition 3D Display Technology Paper presented at the SID 08 DIGEST.
Viewing Cone - Wikipedia. from http://en.wikipedia.org/wiki/Viewing_cone
Wada, C., Liyisong, Ino, S., & Ifukube, T. (1999). A Proposal to Correct Depth Perception of Virtual Objects by Using Tactile Feedback. Paper presented at the IEEE SMC '99 Conference Proceedings.
Wickens, C. D., & Hollands, J. G. (2002). Engineering Psychology and Human Performance (3rd ed.).
Winterbottom, M. D., Patterson, R., Pierce, B. J., Covas, C. M., & Winner, J. (2007). Depth of Focus and Visual Recognition of Imagery Presented on Simultaneously Viewed Displays: Implications for Head-Mounted Displays. Human Factors, 49(5), 907-919.
Wolfe, J. M., Kluender, K. R., Levi, D. M., Bartoshuk, L. M., & Herz, R. S. (2006). Space perception and binocular vision. In G. Donini (Ed.), Sensation & Perception (pp. 126-153): Sinauer Associates, Inc.