簡易檢索 / 詳目顯示

研究生: 白宗彬
Pai, Tsung-Pin
論文名稱: 果蠅長期記憶的形成需要蕈狀體下游神經元的ORB蛋白質
Drosophila ORB protein in two mushroom body output neurons is necessary for long-term memory formation
指導教授: 江安世
Chiang, Ann-Shyn
口試委員: 周雅惠
游宏祥
張慧雲
陳令儀
江安世
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 86
中文關鍵詞: 長期記憶果蠅神經
外文關鍵詞: CPEB, CREB, long-term memory
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 記憶的形成從早期不穩定的狀態,隨著時間推移並透過新生成的蛋白質,慢慢固
    化為得以長期儲存的形式。過去經由對於果蠅嗅覺與電擊之連結學習的研究,建
    立了蕈狀體在長期記憶形成過程中所扮演的關鍵角色。然而,蕈狀體數千顆神經
    細胞的早期活動,如何固化成需要新生蛋白質之長期記憶的實際過程,至今依舊
    是個謎。本研究中,數個獨立的證據顯示,嗅覺長期記憶形成過程中需要兩顆蕈
    狀體的輸出神經(MB-V3);而這兩顆神經也在複雜且廣泛的神經網絡扮演了相
    當重要的角色:(1)阻斷MB-V3神經內的蛋白質新生成會對長期記憶造成損害。
    (2)在間隔式訓練之後, MB-V3神經會有更高的神經活性;密集式訓練之後則
    無。(3)失去嗅覺訊號會導致MB-V3神經與蕈狀體連接的樹突在結構上發生劇
    烈的改變。(4)長期記憶的擷取與固化需要來自MB-V3神經的神經傳導。(5)
    在MB-V3神經內降低ORB蛋白質的活性會導致長期記憶的缺失;ORB蛋白質參與了
    蛋白質轉譯的局部調控。實驗結果暗示了長期記憶的形成包含了一組系統層級的
    固化過程。在這個過程中,早期不穩定的嗅覺記憶初步表現在稀疏少數的蕈狀體
    神經細胞內,再於MB-V3神經與蕈狀體alpha突出部相接的樹突內,藉由蛋白質新
    生成的方式,將不穩定的神經活性轉化為穩定的長期記憶。


    Memory is initially labile and gradually consolidated over time through new protein synthesis into a long-lasting stable form. Studies of odor-shock associative learning in Drosophila have established the mushroom body (MB) as a key brain structure involved in olfactory long-term memory (LTM) formation. Exactly how early neural activity encoded in thousands of MB neurons is consolidated into protein-synthesisdependent LTM remains unclear. Here, several independent lines of evidence indicate that changes in two extrinsic MB-output (MB-V3) neurons are required and contribute to an extended neural network involved in olfactory LTM: (i) inhibiting protein synthesis in MB-V3 neurons impairs LTM, (ii) MB-V3 neurons show enhanced neural activity after spaced but not massed training, (iii) MB-V3 dendrites, synapsing with hundreds of MB α/β neurons, exhibit dramatic structural plasticity after removal of olfactory inputs, (iv) neurotransmission from MB-V3 neurons is necessary for LTM retrieval and (v) RNAi-mediated downregulation of oo18 RNA-binding protein (ORB) in MB-V3 neurons impairs LTM. Our results suggest a model of long-term memory formation which includes a systems-level consolidation process, wherein an early, labile olfactory memory represented by neural activity in a sparse subset of MB neurons is converted into a stable LTM through protein synthesis in dendrites of MB-V3 neurons synapsed onto MB α-lobes.

    Abstract ------------------------------- 2 中文摘要 -------------------------------- 3 1. Introduction ------------------------ 4 2. Results ----------------------------- 5 3. Discussions ------------------------- 9 4. Methods summary -------------------- 12 5. References ------------------------- 14 6. Figures ---------------------------- 17 7. 感謝誌------------------------------- 37

    1. Wang Y, Mamiya A, Chiang AS, & Zhong Y (2008) Imaging of an early memory trace in the Drosophila mushroom body. J Neurosci 28(17):4368-4376.
    2. Loya CM, Van Vactor D, & Fulga TA (2010) Understanding neuronal connectivity through the post-transcriptional toolkit. Genes Dev 24(7):625-635.
    3. Kandel ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5(1):14.
    4. Ule J & Darnell RB (2006) RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr Opin Neurobiol 16(1):102-110.
    5. Si K, Choi YB, White-Grindley E, Majumdar A, & Kandel ER (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140(3):421-435.
    6. Atkins CM, Nozaki N, Shigeri Y, & Soderling TR (2004) Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J Neurosci 24(22):5193-5201.
    7. Alarcon JM, et al. (2004) Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn Mem 11(3):318-327.
    8. Keleman K, Kruttner S, Alenius M, & Dickson BJ (2007) Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nat Neurosci 10(12):1587-1593.
    9. Majumdar A, et al. (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148(3):515-529.
    10. Ashraf SI, McLoon AL, Sclarsic SM, & Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124(1):191-205.
    11. Pascual A & Preat T (2001) Localization of long-term memory within the Drosophila mushroom body. Science 294(5544):1115-1117.
    12. Yu D, Akalal DB, & Davis RL (2006) Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron 52(5):845-855.
    13. Davis RL (2011) Traces of Drosophila memory. Neuron 70(1):8-19.
    14. Wu CL, et al. (2007) Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci 10(12):1578-1586.
    15. Chen CC, et al. (2012) Visualizing long-term memory formation in two neurons of the Drosophila brain. Science 335(6069):678-685.
    16. Lin HH, Lai JS, Chin AL, Chen YC, & Chiang AS (2007) A map of olfactory representation in the Drosophila mushroom body. Cell 128(6):1205-1217.
    17. Tanaka NK, Tanimoto H, & Ito K (2008) Neuronal assemblies of the Drosophila mushroom body. J Comp Neurol 508(5):711-755.
    18. Feinberg EH, et al. (2008) GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57(3):353-363.
    19. Kitamoto T (2001) Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47(2):81-92.
    20. Huang C, et al. (2012) A permissive role of mushroom body alpha/beta core neurons in long-term memory consolidation in Drosophila. Curr Biol 22(21):1981-1989.
    21. Reiff DF, et al. (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25(19):4766-4778.
    22. Bailey CH & Chen M (1988) Long-term memory in Aplysia modulates the total number of varicosities of single identified sensory neurons. Proc Natl Acad Sci U S A 85(7):2373-2377.
    23. Glanzman DL, Kandel ER, & Schacher S (1990) Target-dependent structural changes accompanying long-term synaptic facilitation in Aplysia neurons. Science 249(4970):799-802.
    24. Yang G, Pan F, & Gan WB (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462(7275):920-924.
    25. Roberts TF, Tschida KA, Klein ME, & Mooney R (2010) Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature 463(7283):948-952.
    26. Akalal DB, Yu D, & Davis RL (2010) A late-phase, long-term memory trace forms in the gamma neurons of Drosophila mushroom bodies after olfactory classical conditioning. J Neurosci 30(49):16699-16708.
    27. Dubnau J, et al. (2003) The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13(4):286-296.
    28. Bolduc FV, Bell K, Cox H, Broadie KS, & Tully T (2008) Excess protein synthesis in Drosophila Fragile X mutants impairs long-term memory. Nature Neuroscience 11(10):1143-1145.
    29. Aso Y, et al. (2010) Specific dopaminergic neurons for the formation of labile aversive memory. Curr Biol 20(16):1445-1451.
    30. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4(4):266-275.
    31. Honegger KS, Campbell RA, & Turner GC (2011) Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J Neurosci 31(33):11772-11785.
    32. Claridge-Chang A, et al. (2009) Writing memories with light-addressable reinforcement circuitry. Cell 139(2):405-415.
    33. Krashes MJ, et al. (2009) A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139(2):416-427.
    34. Blum AL, Li W, Cressy M, & Dubnau J (2009) Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Curr Biol 19(16):1341-1350.
    35. Lee PT, et al. (2011) Serotonin-mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila. Proc Natl Acad Sci U S A 108(33):13794-13799.
    36. Qin H, et al. (2012) Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila. Curr Biol 22(7):608-614.
    37. Richter JD & Lorenz LJ (2002) Selective translation of mRNAs at synapses. Curr Opin Neurobiol 12(3):300-304.
    38. Doyle M & Kiebler MA (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 30(17):3540-3552.
    39. McCann C, et al. (2011) The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation. Proc Natl Acad Sci U S A 108(36):E655-662.
    40. Cai D, Chen S, & Glanzman DL (2008) Postsynaptic regulation of long-term facilitation in Aplysia. Curr Biol 18(12):920-925.
    41. Miki T, Takano K, & Yoneda Y (2005) The role of mammalian Staufen on mRNA traffic: a view from its nucleocytoplasmic shuttling function. Cell Struct Funct 30(2):51-56.
    42. Bassell GJ & Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60(2):201-214.
    43. Miller MA & Olivas WM (2011) Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA 2(4):471-492.
    44. Watts RJ, Schuldiner O, Perrino J, Larsen C, & Luo L (2004) Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14(8):678-684.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE