研究生: |
麥凱荻 Madine, Katie Hannah |
---|---|
論文名稱: |
獨立彈性結構陣列中的波傳導現象 Wave Propagation in Flexural Systems |
指導教授: |
嚴大任
Yen, Tajen Colquitt, Daniel Colquitt, Daniel Movchan, Alexander Movchan, Alexander |
口試委員: |
Haslinger, Stewart
Nieves, Michael Sharkey, Kieran 張禎元 Morini, Lorenzo Chang, James |
學位類別: |
博士 Doctor |
系所名稱: |
教務處 - 跨院國際博士班學位學程 International Intercollegiate PhD Program |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 225 |
中文關鍵詞: | 波傳導現象 、陀螺 、鋼樑 、負折射 |
外文關鍵詞: | Wave Propagation, Gyroscopes, Beams, Negative Refraction |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文對由歐拉-伯努利梁組成的撓性系統的動態行為進行深入研究。 特別關注垂直梁之間的撓性和扭轉旋轉的耦合,以及利用系統特性控制所研究陣列的色散性質的能力。 不對稱性是本論文每項研究中的重複主題,從由應用力選擇引起的晶格上非對稱波形,到後面章節研究的垂直陀螺儀模型的固有手徵性和破碎對稱性。 對於每個系統,分析研究由數值計算和有限元模擬補充,以說明產生的不尋常和反直覺效果。
論文的前半部研究歐拉-伯努利樑的一維和二維撓性晶格。 研究的標準對象是格林函數,可以從中獲得有關點力和力矩點載荷下晶格動態響應的信息。 在一維和二維晶格中,應用點力和力矩的組合被證明能產生強烈的動態各向異性,以及多種對稱、反對稱、非對稱和單軸波。 特別考慮了歐拉-伯努利梁方格中撓性和扭轉波之間的相互作用; 透過仔細控制晶格元素的慣性和彈性特性,我們證明可以調整晶格的色散特性。 透過實現對波模式的優選方向的控制,我們研究了波在兩個不同的梁晶格之間的界面上的反射和折射。 界面被用來引起負折射、單向反射、光束分裂和模式捕捉內部包含體。
論文的後續章節研究了由兩個垂直梁組成的垂直陀螺儀模型——垂直梁固定在底座上或安裝在撓性板上——陀螺儀放置在水平樑的自由端。 建立分析模型需要仔細考慮梁接頭之間撓性和扭轉旋轉的耦合,以及陀螺儀旋轉引起的對稱性破壞效應。 我們探討了單一垂直陀螺儀與撓性板上的無限陣列相比的不對稱性,以及由其引起的不對稱性。 我們研究了透過改變系統參數(例如陀螺儀的旋轉速率、光束的長度和陀螺儀軸的方向)來控制陣列的特徵頻率和色散特性。
這項工作可用於開發旨在透過撓性結構控制波傳播的彈性超材料。 由於彈性波傳播在建築物、橋樑、地震防護裝置、風電場、隱形裝置等物理系統中的廣泛應用,彈性波傳播的研究特別令人感興趣。
This thesis presents an in-depth study of the dynamic behaviour of flexural systems composed of Euler--Bernoulli beams. Particular attention is paid to the coupling of flexural and torsional rotations between perpendicular beams and the ability to control the dispersive properties of the arrays studied using the properties of the system. Asymmetry is a recurring theme through each study in this thesis, from the asymmetric wave forms on lattices that can be induced by the choice of applied forcing to the inherent chirality and broken symmetries of the perpendicular gyroscope model studied in later chapters. For each system, analytical studies are complemented by numerical computations and finite element simulations, to illustrate the unusual and counterintuitive effects produced.
The first half of the thesis investigates 1D and 2D flexural lattices of Euler--Bernoulli beams. The canonical object of study is the Green's function, from which information regarding the dynamic response of the lattice under point loading by forces and moments can be obtained. In both the 1D and 2D lattices, the combination of applied point forces and moments is shown to produce strong dynamic anisotropy with a variety of symmetric, anti-symmetric, asymmetric and uni-axial waves. Special consideration is devoted to the interaction between flexural and torsional waves in a square lattice of Euler--Bernoulli beams; by carefully controlling the inertial and elastic properties of the lattice elements, we demonstrate that it is possible to tune the dispersive properties of the lattice. Implementing the resulting control over the preferential directions of wave modes, we investigate the reflection and refraction of waves across interfaces between two dissimilar lattices of beams. The interfaces are used to induce negative refraction, unidirectional reflection, beam splitting and mode trapping inside inclusions.
Later chapters in this thesis study the perpendicular gyroscope model which is formed of two perpendicular beams---with the vertical beam either clamped at the base or mounted on a flexural plate---and a gyroscope placed at the free end of the horizontal beam. Building the analytical model requires careful consideration of the coupling of flexural and torsional rotations between beam junctions and the symmetry-breaking effects induced by the spinning of the gyroscope. We explore the asymmetry of, and induced by, individual perpendicular gyroscopes compared to infinite arrays on flexural plates. We investigate the control over the eigenfrequencies and dispersive properties of the array afforded by altering parameters of the system, such as the rate of spin of the gyroscope, the length of the beams and the orientation of the gyroscope axes.
This work has applications in the development of elastic metamaterials designed to control wave propagation through flexural structures. The study of elastic wave propagation is of particular interest due to the wide variety of applications to physical systems such as buildings, bridges, seismic protection devices, wind farms, cloaking devices and more.
1. K. H. Madine and D. J. Colquitt. Dynamic Green’s functions in discrete flexural systems. The Quarterly Journal of Mechanics and Applied Mathematics, 74(3): 323–350, 2021.
2. K. H. Madine and D. J. Colquitt. Negative refraction and mode trapping of flexural–torsional waves in elastic lattices. Phil. Trans. R. Soc. A, 380:20210379, 2022.
3. V. G. Veselago. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Soviet Physics Uspekhi, 10(4):509–514, 1968.
4. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton. Optical and dielectric properties of partially resonant composites. Physical Review B, 49(12):8479–8482, 1994.
5. D. R. Smith and N. Kroll. Negative refractive index in left-handed materials. Physical Review Letters, 85(14):2933–2936, 2000.
6. J. B. Pendry. Negative refraction makes a perfect lens. Phys Rev Lett, 85(18): 3966–3969, 2000.
7. R. A. Shelby, D. R. Smith, and S. Schultz. Experimental verification of a negative index of refraction. Science, 292(April):77–80, 2001.
8. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18):4184–4187, 2000.
9. R. M. Walser. Electromagnetic metamaterials. Proceeding SPIE Complex Mediums II beyond Linear Isotropic Dielectrics, 4467:1–15, 2001.
10. M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener. 3D Metamaterials. Nature Reviews Physics, 1(3):198–210, 2019.
11. J. B. Pendry. Negative refraction. Contemporary Physics, 45(3):191–202, 2004.
12. G. W. Milton, N. Nicorovici, and R. C. McPhedran. Opaque perfect lenses. Physica B: Condensed Matter, 394(2):171–175, 2007.
13. S. Enoch, G. Tayeb, P. Sabouroux, N. Gu´erin, and P. Vincent. A metamaterial for directive emission. Physical Review Letters, 89(21), 2002.
14. M. Burresi, D. Diessel, D. van Oosten, S. Linden, M. Wegener, and L. Kuipers. Negative-index metamaterials: Looking into the unit cell. Nano Letters, 10(7): 2480–2483, 2010.
15. R. V. Craster and S. Guenneau. Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking. Springer Series in Materials Science. Springer Netherlands, 2012.
16. S. A. Cummer, J. Christensen, and A. Al`u. Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3), 2016.
17. A. Colombi, D. J. Colquitt, P. Roux, S. Guenneau, and R. V. Craster. A seismic metamaterial: The resonant metawedge. Scientific Reports, 6(1), 2016.
18. A. Palermo, S. Kr¨odel, A. Marzani, and C. Daraio. Engineered metabarrier as shield from seismic surface waves. Scientific Reports, 6(1), 2016.
19. G. Carta, G. F. Giaccu, and M. Brun. A phononic band gap model for long bridges. The ‘Brabau’ bridge case. Engineering Structures, 140:66–76, 2017.
20. J. B. Pendry, D. Schurig, and D. R. Smith. Controlling electromagnetic fields. Science, 312(5781):1780–2, June 2006. ISSN 1095-9203.
21. G. W. Milton and N. Nicorovici. On the cloaking effects associated with anomalous localized resonance. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2074):3027–3059, 2006.
22. F. Guevara Vasquez, G. W. Milton, and D. Onofrei. Exterior cloaking with active sources in two dimensional acoustics. Wave Motion, 48(6):515–524, 2011.
23. D. J. Colquitt, I. S. Jones, N. V. Movchan, A. B. Movchan, M. Brun, and R. C. McPhedran. Making waves round a structured cloak: lattices, negative refraction and fringes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2157):20130218, 2013.
24. A. Piccolroaz, A. B. Movchan, and L. Cabras. Rotational inertia interface in a dynamic lattice of flexural beams. International Journal of Solids and Structures, 112:43–53, 2017.
25. A. Piccolroaz, A. B. Movchan, and L. Cabras. Dispersion degeneracies and standing modes in flexural waves supported by Rayleigh beam structures. International Journal of Solids and Structures, 109:152–165, 2017.
26. L. Cabras, A. B. Movchan, and A. Piccolroaz. Floquet–Bloch waves in periodic networks of Rayleigh beams: Honeycomb systems, dispersion degeneracies, and structured interfaces. Mechanics of Solids, 52(5):549–563, 2017.
27. L. Morini, Y. Eyzat, and M. Gei. Negative refraction in quasicrystalline multilayered metamaterials. Journal of the Mechanics and Physics of Solids, 124:282–298, 2019.
28. Z. Chen, L. Morini, and M. Gei. Negative refraction for anti-plane elastic waves in canonical quasicrystalline laminates. European Journal of Mechanics - A/Solids, page 104577, 2022.
29. X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters, 98(25):251907, 2011.
30. X. Zhou, X. Liu, and G. Hu. Elastic metamaterials with local resonances: an overview. Theoretical and Applied Mechanics Letters, 2(4):041001, 2012.
31. G. W. Milton. The Theory of Composites. Cambridge University Press (Cambridge Monographs on Applied and Computational Mathematics), 2002.
32. A. B. Movchan, N. V. Movchan, I. S. Jones, and D. J. Colquitt. Mathematical modelling of waves in multi-scale structured media. CRC Press, 2017.
33. M. Kadic, T. B¨uckmann, R. Schittny, and M. Wegener. Experiments on cloaking in optics, thermodynamics and mechanics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2049):20140357, 2015.
34. G. W. Milton and A. V. Cherkaev. Which elasticity tensors are realizable? Journal of Engineering Materials and Technology, 117(4):483–493, 1995.
35. A. N. Norris and A. L. Shuvalov. Elastic cloaking theory. Wave Motion, 48(6): 525–538, 2011.
36. G. W. Milton, M. Briane, and J. R. Willis. On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics, 8(10): 248–248, 2006.
37. M. Brun, S. Guenneau, and A. B. Movchan. Achieving control of in-plane elastic waves. Applied Physics Letters, 94(6):061903, 2009.
38. A. N Norris, F. A Amirkulova, and W. J Parnell. Active elastodynamic cloaking. Mathematics and Mechanics of Solids, 19(6):603–625, 2013.
39. G. Futhazar, W. J. Parnell, and A. N. Norris. Active cloaking of flexural waves in thin plates. Journal of Sound and Vibration, 356:1–19, 2015.
40. A. N Norris, F. A Amirkulova, and W. J Parnell. Source amplitudes for active exterior cloaking. Inverse Problems, 28(10):105002, 2012.
41. M. D. Guild, A. Alu, and M. R. Haberman. Cloaking of an acoustic sensor using scattering cancellation. Applied Physics Letters, 105(2):023510, 2014.
42. J. O’Neill, O. Selsil, S. G. Haslinger, N. V. Movchan, and R. V. Craster. Active cloaking for finite clusters of pins in Kirchhoff plates. SIAM Journal on Applied Mathematics, 77(4):1115–1135, 2017.
43. J. O’Neill, O. Selsil, R. C. McPhedran, A. B. Movchan, N. V. Movchan, and C. Henderson Moggach. Active cloaking of resonant coated inclusions for waves in membranes and Kirchhoff plates. arXiv: Classical Physics, 2015.
44. F. J. Allison, O. Selsil, and S. G. Haslinger. Active exterior cloaking of an inclusion with evanescent multipole devices for flexural waves in thin plates. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2237), 2022.
45. J. O’Neill, O. Selsil, R. C. McPhedran, A. B. Movchan, and N. V. Movchan. Active cloaking of inclusions for flexural waves in thin elastic plates. The Quarterly Journal of Mechanics and Applied Mathematics, 68(3):263–288, 2015.
46. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11):2075–2084, 1999.
47. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M.Wegener. Three-dimensional invisibility cloak at optical wavelengths. Science, 328(5976):337–339, 2010.
48. T. Ergin, J. Fischer, and M. Wegener. Optical phase cloaking of 700nm light waves in the far field by a three-dimensional carpet cloak. Physical Review Letters, 107 (17), 2011.
49. R. Schittny, M. Kadic, T. Buckmann, and M. Wegener. Invisibility cloaking in a diffusive light scattering medium. Science, 345(6195):427–429, 2014.
50. M. F. Schumann, S. Wiesendanger, J. C. Goldschmidt, B. Blasi, K. Bittkau, U. W. Paetzold, A. Sprafke, R. B. Wehrspohn, C. Rockstuhl, and M. Wegener. Cloaked contact grids on solar cells by coordinate transformations: Designs and prototypes. Optica, 2(10):850, 2015.
51. D. J. Colquitt, M. Brun, M. Gei, A. B. Movchan, N. V. Movchan, and I. S. Jones. Transformation elastodynamics and cloaking for flexural waves. Journal of the Mechanics and Physics of Solids, 72:131–143, 2014.
52. T. Buckmann, M. Kadic, R. Schittny, and M. Wegener. Mechanical cloak design by direct lattice transformation. Proceedings of the National Academy of Sciences, 112(16):4930–4934, 2015.
53. N. Stenger, M. Wilhelm, and M. Wegener. Experiments on elastic cloaking in thin plates. Physical Review Letters, 108(1), 2012.
54. D. Misseroni, D. J. Colquitt, A. B. Movchan, N. V. Movchan, and I. S. Jones. Cymatics for the cloaking of flexural vibrations in a structured plate. Scientific Reports, 6(1), 2016.
55. D. Misseroni, A. B. Movchan, and D. Bigoni. Omnidirectional flexural invisibility of multiple interacting voids in vibrating elastic plates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2229):20190283, 2019.
56. G. Carta, I. S. Jones, N. V. Movchan, A. B. Movchan, and M. J. Nieves. Gyroelastic beams for the vibration reduction of long flexural systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2203): 20170136, 2017.
57. X. Pu, A. Palermo, Z. Cheng, Z. Shi, and A. Marzani. Seismic metasurfaces on porous layered media: Surface resonators and fluid-solid interaction effects on the propagation of Rayleigh waves. International Journal of Engineering Science, 154: 103347, 2020.
58. A. Colombi, P. Roux, S. Guenneau, P. Gueguen, and R.. V. Craster. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Scientific Reports, 6(1), 2016.
59. M. Brun, A. B. Movchan, and L. I. Slepyan. Transition wave in a supported heavy beam. Journal of the Mechanics and Physics of Solids, 61(10):2067–2085, 2013.
60. M. J. Nieves and M. Brun. Dynamic characterization of a periodic microstructured flexural system with rotational inertia. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2156):20190113, 2019.
61. M. Brun, G. F. Giaccu, A. B. Movchan, and L. I. Slepyan. Transition wave in the collapse of the San Saba bridge. Frontiers in Materials, 1, 2014.
62. M. J. Nieves, G. S. Mishuris, and L. I. Slepyan. Analysis of dynamic damage propagation in discrete beam structures. International Journal of Solids and Structures, 97-98:699–713, 2016.
63. L. Brillouin. Wave propagation in periodic structures. McGraw-Hill Book Company Inc, 2nd edition, 1946.
64. J. M. Borwein, M. L. Glasser, R. C. McPhedran, J. G. Wan, and I. J. Zucker. Lattice Sums Then and Now. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2013.
65. L. I. Slepyan. Models and phenomena in fracture mechanics. Springer Science & Business Media, 2012.
66. G. Grosso and P. Parravicini. Solid state physics. Academic Press, 2003.
67. K. F. Graff. Wave Motion in Elastic Solids. Oxford University Press, 1975.
68. L. Meirovitch. Fundamentals of Vibrations. McGraw-Hill, 2001.
69. R. S. Langley, N. S. Bardell, and H. M. Ruivo. The response of two-dimensional periodic structures to harmonic point loading: a theoretical and experimental study of a beam grillage. Journal of Sound and Vibration, 207(4):521–535, 1997.
70. K. Ray. Green’s function on lattices. 2014.
71. A. L. Vanel, R. V. Craster, D. J. Colquitt, and M. Makwana. Asymptotics of dynamic lattice green’s functions. Wave Motion, 67:15–31, 2016.
72. M. V. Ayzenberg-Stepanenko and L. I. Slepyan. Resonant-frequency primitive waveforms and star waves in lattices. Journal of Sound and Vibration, 313(3-5): 812–821, 2008.
73. R. S. Langley. The response of two-dimensional periodic structures to point harmonic forcing. Journal of Sound and Vibration, 197(4):447–469, 1996.
74. D. J. Colquitt, I. S. Jones, N. V. Movchan, A. B. Movchan, and R. C. McPhedran. Dynamic anisotropy and localization in elastic lattice systems. Waves in Random and Complex Media, 22(2):143–159, 2012.
75. D. J. Colquitt, I. S. Jones, N. V. Movchan, and A. B. Movchan. Dispersion and localization of elastic waves in materials with microstructure. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2134):2874–2895, 2011.
76. A. Piccolroaz and A. B. Movchan. Dispersion and localisation in structured Rayleigh beams. International Journal of Solids and Structures, 51(25-26):4452– 4461, 2014.
77. Y. A. Melnikov. Green’s function of a thin circular plate with elastically supported edge. Engineering Analysis with Boundary Elements, 25(8):669–676, 2001.
78. G. Carta, D. J. Colquitt, A. B. Movchan, N. V. Movchan, and I. S. Jones. Chiral flexural waves in structured plates: Directional localisation and control. Journal of the Mechanics and Physics of Solids, 137:103866, 2020.
79. R. Wiltshaw, J. M. De Ponti, and R Craster. Analytical solutions for bloch waves in resonant phononic crystals: Deep subwavelength energy splitting and mode steering between topologically protected interfacial and edge states. arXiv, 2022.
80. M. J. Nieves, A. B. Movchan, I. S. Jones, and G. S. Mishuris. Propagation of Slepyan’s crack in a non-uniform elastic lattice. Journal of the Mechanics and Physics of Solids, 61(6):1464–1488, 2013.
81. D. J. Colquitt, M. J. Nieves, I. S. Jones, A. B. Movchan, and N. V. Movchan. Localization for a line defect in an infinite square lattice. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2150):20120579, 2013.
82. M. Ryvkin and L. I. Slepyan. Crack in a 2D beam lattice: Analytical solutions for two bending modes. Journal of the Mechanics and Physics of Solids, 58(6): 902–917, 2010.
83. A. B. Movchan and L. I. Slepyan. Band gap Green’s functions and localized oscillations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2086):2709–2727, 2007.
84. P. G. Martinsson and A. B. Movchan. Vibrations of lattice structures and phononic band gaps. The Quarterly Journal of Mechanics and Applied Mathematics, 56(1): 45–64, 2003.
85. S. Gonella and M. Ruzzene. Homogenization of vibrating periodic lattice structures. Applied Mathematical Modelling, 32(4):459–482, 2008.
86. A. Srikantha Phani, J. Woodhouse, and N. A. Fleck. Wave propagation in twodimensional periodic lattices. The Journal of the Acoustical Society of America, 119(4):1995–2005, 2006.
87. R. C. McPhedran, A. B. Movchan, N. V. Movchan, M. Brun, and M. J. A. Smith. ‘Parabolic’ trapped modes and steered Dirac cones in platonic crystals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2177):20140746, 2015.
88. D. J. Colquitt, N. V. Movchan, and A. B. Movchan. Parabolic metamaterials and dirac bridges. Journal of the Mechanics and Physics of Solids, 95:621–631, 2016.
89. S. Timoshenko. Strength of materials. Van Nostrand, 1955.
90. L. Raghavan and A. Srikantha Phani. Local resonance bandgaps in periodic media: Theory and experiment. The Journal of the Acoustical Society of America, 134(3): 1950–1959, 2013.
91. S. Hassanpour and G. R. Heppler. Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros. Acta Astronautica, 118:33–48, 2016.
92. G. Bordiga, L. Cabras, D. Bigoni, and A. Piccolroaz. Free and forced wave propagation in a Rayleigh-beam grid: Flat bands, Dirac cones, and vibration localization vs isotropization. International Journal of Solids and Structures, 161:64–81, 2018.
93. M. Ruzzene, F. Scarpa, and F. Soranna. Wave beaming effects in two-dimensional cellular structures. Smart Materials and Structures, 12(3):363–372, 2003.
94. G. Carta, I. S. Jones, N. V. Movchan, A. B. Movchan, and M. J. Nieves. “Deflecting elastic prism” and unidirectional localisation for waves in chiral elastic systems. Scientific Reports, 7(1), 2017.
95. G. Carta, D. J. Colquitt, A. B. Movchan, N. V. Movchan, and I. S. Jones. Oneway interfacial waves in a flexural plate with chiral double resonators. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2162):20190350, 2019.
96. S. Timoshenko and S. Woinowsky-Krieger. Theory of plates and shells. McGraw-Hill, 1959.
97. R. D. Mindlin. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics, 18(1):31–38, 1951.
98. J. N. Reddy. Theory and analysis of elastic plates and shells. CRC Press, 2007.
99. K. Hyde, J. Y. Chang, C. Bacca, and J. A. Wickert. Parameter studies for plane stress in-plane vibration of rectangular plates. Journal of Sound and Vibration, 247(3):471–487, 2001.
100. S. G. Haslinger, I. S. Jones, N. V. Movchan, and A. B. Movchan. Localization in semi-infinite herringbone waveguides. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2211):20170590, 2018.
101. G. J. Chaplain, D. Pajer, J. M. De Ponti, and R. V. Craster. Delineating rainbow reflection and trapping with applications for energy harvesting. New Journal of Physics, 22(6):063024, 2020.
102. W. T. Kelvin. The molecular tactics of a crystal. Clarendon Press, 1894.
103. Z. Wang, F. Cheng, T. Winsor, and Y. Liu. Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications. Nanotechnology, 27(41): 412001, 2016.
104. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis. Chiral metamaterials: Simulations and experiments. Journal of Optics A: Pure and Applied Optics, 11(11):114003, 2009.
105. M. J. Nieves, G. Carta, V. Pagneux, and M. Brun. Rayleigh waves in microstructured elastic systems: Non-reciprocity and energy symmetry breaking. International Journal of Engineering Science, 156:103365, 2020.
106. M. Garau, G. Carta, M. J. Nieves, I. S. Jones, N. V. Movchan, and A. B. Movchan. Interfacial waveforms in chiral lattices with gyroscopic spinners. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2215): 20180132, 2018.
107. M. J. Nieves, G. Carta, I. S. Jones, A. B. Movchan, and N. V. Movchan. Vibrations and elastic waves in chiral multi-structures. Journal of the Mechanics and Physics of Solids, 121:387–408, 2018.
108. G. Carta, M. J. Nieves, I. S. Jones, N. V. Movchan, and A. B. Movchan. Elastic chiral waveguides with gyro-hinges. The Quarterly Journal of Mechanics and Applied Mathematics, 71(2):157–185, 2018.
109. G. M. D’Eleuterio and P. C. Hughes. Dynamics of gyroelastic continua. Journal of Applied Mechanics, 51(2):415–422, 1984.
110. P. C. Hughes and G. M. D’Eleuterio. Modal parameter analysis of gyroelastic continua. Journal of Applied Mechanics, 53(4):918–924, 1986.
111. G. M. D’Eleuterio. On the theory of gyroelasticity. Journal of Applied Mechanics, 55(2):488–489, 1988.
112. K. Yamanaka, G. R. Heppler, and K. Huseyin. Stability of gyroelastic beams. AIAA Journal, 34(6):1270–1278, 1996.
113. G. M. D’Eleuterio and P. C. Hughes. Dynamics of gyroelastic spacecraft. Journal of Guidance, Control, and Dynamics, 10(4):401–405, 1987.
114. W. Kaplan. Advanced Calculus. MA: Addison-Wesley, 3rd edition, 1984.
115. J. H. Michell. On the direct determination of stress in an elastic solid, with application to the theory of plates. Proceedings of the London Mathematical Society, s1-31(1):100–124, 1899.
116. L. W. Cai and S. A. Hambric. Movable rigid scatterer model for flexural wave scattering on thin plates. Journal of Vibration and Acoustics, 138(3), 2016.
117. M. Kac. Can one hear the shape of a drum? The American Mathematical Monthly, 73(4):1, 1966.
118. H. Goldstein, J. L. Safko, and C. P. Poole. Classical Mechanics. Pearson Education, 2014.
119. P. A. Martin. Discrete scattering theory: Green’s function for a square lattice. Wave Motion, 43(7):619–629, 2006.
120. R. V. Craster, T. Antonakakis, M. Makwana, and S. Guenneau. Dangers of using the edges of the brillouin zone. Physical Review Letters B, 86(11):115130, 2012.
121. COMSOL Multiphysics® v. 5.5. COMSOL AB. Stockholm, Sweden. 122. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade. Photonic Crystals: Molding the Flow of Light (Second Edition). Princeton University Press, 2 edition, 2008. ISBN 0691124566.
123. MATLAB® 2020a. The MathWorks Inc. Natick, Massachusetts, United States.
124. L. F. Shampine. Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211(2):131–140, 2008.
125. L. F. Shampine. MATLAB program for quadrature in 2D. Applied Mathematics and Computation, 202(1):266–274, 2008.