簡易檢索 / 詳目顯示

研究生: 許皓倫
Hsu, Hao Lun
論文名稱: 利用矽波導非線性現象產生中紅外超連續光譜
Mid-Infrared Continuum Generation through Si-on-Air Nonlinear Waveguides
指導教授: 李明昌
Lee, Ming Chang
口試委員: 楊尚達
Yang, Shang Da
黃承彬
Huang, Chen Bin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 超連續光譜中紅外光
外文關鍵詞: supercontinuum, Mid-IR
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超連續光譜最早是在1969年由Alfano與Shapiro提出,因為有著高功率、寬頻譜與高同調特性,在近紅外光通訊波段已被應用於許多領域,如光學斷層攝影、光頻量測數及非線性光譜學等等。相較於近紅外光,中紅外光則在無線通訊、環境偵測與醫學等方面具有不錯之優異性及潛力。
    本實驗提出利用矽波導,打入高能量之超短脈衝,藉由自相位調變與色散的交互作用,在單一晶片上產生超連續光譜。選擇矽波導是因為它比起光纖擁有許多的優勢,如光侷限性佳與非線性係數高,元件只需數公分長度,加上和CMOS製程相符合,能把元件積體化;最重要的是,光纖在中紅外波段的吸收損耗是近紅外光好幾個數量級,而矽材料在1.3–9 μm則擁有高穿透性,較適合中紅外光傳播。
    本論文研究包含矽波導的非線性理論與模擬,矽波導結構設計,以及元件的製作與量測分析。量測原先使用的超短脈衝雷射波長為2.2 μm,但是此光源重覆率只有1 kHz,使的峰值功率太大造成元件損壞。最後我們改用近紅外光光源,觀察在高功率超短脈衝雷射的激發下,頻譜從原先的40 nm擴展至55 nm,證明元件是可以作用且產生超連續光譜。


    Supercontinuum (SC) is a broadband light source first observed by Alfano and Shapiro in 1970. Due to high brightness and high coherence, SC has been applied in optical coherence tomography, frequency metrology and nonlinear spectroscopy within near-IR spectrum. Apart from near-IR, mid-IR radiation can be used for free space communication, environmental sensing, and Medicine.
    We propose launching an optical ultra-short pulse into a silicon rib waveguide to generate mid-IR SC. The SC generation on Si waveguides relies on the third-order nonlinear optics, such as self-phase modulation, interplaying with chromatic dispersion. Compared with silica-based optical fibers, silicon has attracted the generation of SC due to high confinement and nonlinear coefficient. Meanwhile, along with the rapid development of silicon photonic technologies, a compact nonlinear optic chip is feasible to be implemented by those silicon photonic waveguides. Most importantly, silica is very lossy in the mid-IR spectrum window but silicon is transparent from 1.3μm to 9μm. Therefore, nonlinear silicon waveguides could be a promising platform to generate mid-IR SC due to its low optical loss and strong optical nonlinearity.

    This study includes the analysis of nonlinear optical effects in silicon, simulation, device design, device fabrication and experiment results. The wavelength of pump mid-IR pulse in the experiment was 2.2 μm. However, the repetition rate of pump only 1 kHz, causing the chip easily damaged because of too strong peak power but weak averaged power. We then alter the light source to near-IR and observed the spectral broadening from 40 nm to 55 nm. It is demonstrated that we can use such a short silicon waveguide to generate SC.

    摘要 I Abstract II 致謝 IV 目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 6 1.3 論文架構 11 第二章 理論背景 12 2.1 中紅外光作用在矽波導 12 2.2 非線性光學理論 14 2.3 矽波導非線性現象 17 2.3.1 光學克爾效應 18 2.3.2 自相位調變 19 2.3.3 自陡峭效應 24 2.4 矽波導之色散現象 25 2.4.1 二階色散 26 2.4.2 三階色散 29 2.4.3 降低矽波導色散 30 2.4.4 展頻最佳化 31 2.5 矽波導其他現象 32 2.5.1 雙光子吸收 32 2.5.2 自由載子影響 33 第三章 非線性現象模擬 38 3.1 非線性薛丁格方程式 38 3.2 數值分析 39 3.3 相關名詞定義與解說 43 3.4 模擬理論與分析 45 第四章 元件設計與製作流程 49 4.1 元件架構 49 4.2 元件結構設計 51 4.2.1 單模波導條件 51 4.2.2 彎曲波導之最佳化半徑 54 4.2.3 孔洞與波導適當之距離 57 4.3 元件製作流程 61 4.3.1 元件製程說明 62 第五章 元件模擬與量測分析 71 5.1 元件特性之理論模型 71 5.2 實驗架構與量測方法 73 5.2.1 矽波導損耗之量測 73 5.2.2 超連續光譜量測 75 5.3 近紅外光非線性量測 80 5.3.1 近紅外光超連續光譜 80 5.3.2 實驗數據與分析 82 第六章 結論 86 附錄(一)模擬程式碼 87 參考文獻 89

    [1] James G. Fujimoto and Costas Pitris, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia, Vol. 2, 2000, pp. 9-25.
    [2] Th. Udem, R. Holzwarth and T. W. Hänsch, “review article Optical frequency metrology,” Nature 416, 2002, pp. 233-237.
    [3] Jinendra K. Ranka, Robert S. Windeler, and Andrew J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt Lett, Vol. 25, No. 1, 2000, pp.391-393..
    [4] Boyraz, O., Indukuri, T., and Jalali, B. “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 2004, pp.829-834.
    [5] Hsieh, I. W. et al., “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15, 2007, pp. 1135-1146.
    [6] Salem, R. et al. “Signal regeneration using low-power four-wave mixing on silicon chip," Nat Photon 2, 2008, pp. 35-38.
    [7] Alfano, R. R., and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 1970, pp. 584–587.
    [8] Jamal T. Nanassah, and Robert R. Alfano, “Spectral distribution of an ultra fast supercontinuum laser source,” Phys Lett, Vol. 107A, No.7, 1984
    [9] C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy”, Appl. Phys. Lett. 28, 1976, pp. 216.
    [10] Ozdal Boyraz, and Tejaswi Indukuri, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express, Vol. 12, No. 5, 2004.
    [11] R. Dekker, and E. J. Klein, “Self phase modulation and stimulated raman scattering due to power femtosecond pluse propagation in silicon-on-insulator waveguides,” IEEE, 2005.
    [12] P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” Optical Communication, Vol. 1, 1998, pp. 475-476.
    [13] J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” Photonics Technology Letters, IEEE, Vol. 17, 2005, pp. 423-425.
    [14] L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett, Vol. 32, 2007, pp. 391-393.
    [15] Soo-Jin Park, Chang-Hee Lee, and Ki-Tae Jeong, “Soo-Jin Park, Chang-Hee Lee, and Ki-Tae Jeong, “Fiber-to-the-home services based on wavelength division multiplexing passive optical network,” OSA, Vol. 22, 2004, pp. 2582
    [16] 林柏彥, “高甫仁,超快雷射於生醫影像之應用,” 2010
    [17] Herzberg Gerhard, “Molecular spectra and molecular structure II: Infrared and roman spectra of polyatomic molecules”, van Nostrand Reinhold Company Inc., 1945.
    [18] Albert Schliesser, Nathalie picque, and Theodor W. Haensch, “Mid-infrared frequency combs” Nature Photonics 6, 2012, pp.440-449.
    [19] Lianghong Yin, Qiang Lin, and Govind P. Agrawal, ”Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett, Vol. 32, No. 4, 2007, pp. 391-393.
    [20] Ryan K. W. Lau, Michael R. E. Lamont and Yoshitomo Okawachi, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt Lett, Vol. 39, June 2014, pp. 4518-4521.
    [21] Research on ultra-low-loss optical fibers in the long-wavelength band
    [22] Christian Rosenberg Petersen, and Uffe Moller, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nature Photonics, Vol.8, 2014, pp.830-834.
    [23] Michael R. E. Lamont, and Ryan K. W. Lau, “Mid-Infrared supercontinuum generation in silicon waveguides,” OSA, 2013
    [24] Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y., and Jalali, B., “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 2003, pp.1731-1739.
    [25] Lin, Q., Painter, O. J., and Agrawal, G. P., “Nonlinear optical phenomena in silicon waveguides: modeling and applications,“ Opt. Express 15, 2007, pp.16604-16644.
    [26] Agrawal, G. P., “Nonlinear Fiber Optics,” 3rd ed. Academic, San Diego, 2001.
    [27] Dekker, R., Usechak, N., Forst, M., and Driessen, A., “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” Journal of Physics D-Applied Physics 40, 2007, R249-R271.
    [28] Dimitropoulos, D., Jhaveri, R., and Claps, R., “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides” Applied Physics Letters 86, 2005.
    [29] Tanabe, T. et al., “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Applied Physics Letters 90, 2007.
    [30] Tien, E. K., Yuksek, N. S., and, Qian, F., “Pulse compression and modelocking by using TPA in silicon waveguides,” Optics Express 15, 2007, pp.6500-6506.
    [31] Soref, R. A., and Bennett, R. R., “Electro optical effects in Silicon” IEEE Journal of Quanum Electronics 32, 1987, pp.123-129 .
    [32] Dekker, R., Usechak, N., and Forst, M., “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides.” Journal of Physics D-Applied Physics 40, 2007, R249-R271.
    [33] R.H. Hardin, F.D. Tappert, R.H. Hardin and F.D. Tappert, “Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,” 1972.
    [34] R.Y. Chiao, T. K. Gustafson, and P. L. Kelley, “Self-Focusing of Optical Beams.”
    [35] B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics.”
    [36] Xu, Q., Almeida, V., and Lipson, M., “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express 12, 2004, pp.4437-4442.
    [37] Robert Halir, “A design procedure for high performance rib waveguide based multimode interference couplers in silicon-on-insulator,” IEEE Journal of lightwave technology, Vol.26, No. 16, 2008.
    [38] Chen Yuanyuan, and Yan Qingfeng, “Structural Optimizations of SOI-based Single-mode Rib Waveguide Bends,” IEEE, 2004.
    [39] Shang-Da Yang, " Ultrafast Optical " (2009)
    [40] 陳子欣, “利用矽波導的非線性現象結合平面波導光柵在單一晶片上產生超連續光譜,” 國立清華大學 光電工程所, 2009

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE