簡易檢索 / 詳目顯示

研究生: 黃柏鈞
Huang, Bo-Jyun
論文名稱: Duffing-like模型之進階參數識別曁半主動控制應用
Advanced parameter identification of Duffing-like model and its application to semi-active control
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員: 林子剛
Lin, Tzu Kang
徐勝均
Xu, Sheng-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: Duffing-like模型動態次結構測試半主動控制磁流變阻尼器
外文關鍵詞: Duffing-like model, Dynamic substructured system testing, semi-active, magnetorheological damper
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地震發生頻繁,近年來更發生許多大地震造成嚴重損害,因此結構物減震研究持續受到重視。結構減震控制技術目前主要分為主動控制、被動控制與半主動控制,由於半主動控制比被動控制多了適應性,又比主動控制多了安全性,因此本研究採用磁流變阻尼器來實現半主動減震目的。過去文獻常用Bouc-wen模型模擬磁流變阻尼器之非線性遲滯動態,且有著高引用率的限幅最佳化控制法雖可以調控磁流變阻尼器之阻尼力,但控制電壓不連續使得細部追蹤控制無法有效達成。因此本論文以先前實驗室團隊提出之Duffing-like模型作為磁流變阻尼器的數學模型,應用在半主動減震工程,並深入討論Duffing-like模型之進階參數識別,藉由觀察遲滯曲線變化、基礎運動物理學與聯立方程式數學,找出Duffing-like模型參數唯一解,減少反覆試驗與錯誤嘗試的過程,使Duffing-like模型能夠迅速且正確地識別遲滯現象。接著本文再使用先前實驗室團隊提出之能量最佳化控制法調控磁流變阻尼器之阻尼力。
    本研究使用國家地震工程研究中心之磁流變阻尼器與MTS油壓致動器為實驗設備,首先進行阻尼器遲滯模型之進階參數識別實驗,識別結果指出Duffing-like模型與實驗數據擬合相似度可達到90%以上。接著以Duffing-like模型設計能量最佳化控制方法之控制參數,並進行全數值模擬與動態次結構系統實驗。模擬與實驗結果都顯示能量最佳化控制法不但有效減少結構物位移,且相較於限幅最佳化控制法有較好的節能效果。此外,一系列識別與控制實驗證明本論文提出的Duffing-like模型進階參數識別方法,能夠精準、快速且有效地描述遲滯動態,提升半主動控制之減震效能。日後期望能將Duffing-like模型廣泛運用於識別不同的遲滯動態現象,並將能量最佳化控制法運用於有遲滯現象的減震元件,解決遲滯減震元件的控制難題。


    In recent years, there are major disasters caused by earthquake in Taiwan, therefore the study of the vibration reduction of structural system has received increasing attention.
    Structure control technology mainly divides into active control, passive control, and semi-active control. Semi-active control is more adaptable than passive control, and is more reliable than active control, so this study target the semi-active control, and take magnetorheological damper as the mainly vibration reduction elemen. The Bouc-Wen model in literature includes discontinuous, nondeterministic, and piecewise function render the system identification. In literature, the clipped-optimal control can reduce the vibration, but its control energy is not a continuous and smooth signal, and can not track in detail. In order to overcome the difficulties, the study introduces the Duffing-like model and the Energy optimization control(EOC)which is proposed by the team of Lab.
    This study proposed a new identification method which uses Duffing-like model. By observing the variation of hysteresis, based on the basic motion physics and the simultaneous equation mathematics, and find the unique solution for Duffing-like model parameters. Then used the new identification method Applied to the EOC, and do the numerical simulation and Dynamic substructured system testing(DSS)to verify the effect of vibration reduction of control methods. This paper verifies the similarity of hysteresis between the model and the experimental can reach more than 90% by used the new identification method. According to the data of simulation and DSS experiment, we know that the EOC not only has good control effect but also has better control energy coefficient.

    致謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 符號說明 X 第一章、緒論 1 1.1 文獻回顧 1 1.1.1 遲滯模型研究 2 1.1.2 磁流變阻尼器介紹 7 1.1.3 磁流變阻尼器之半主動控制研究 10 1.1.4 動態次結構系統測試法 12 1.2 研究動機 15 1.3 研究目標 15 1.4 論文架構 16 第二章、減震結構物與Duffing-like模型參數識別 17 2.1 Duffing-like模型介紹 17 2.2 Duffing-like模型之進階參數識別 20 2.2.1 參數唯一解概念與識別流程介紹 21 2.2.2 遲滯曲線之參考點選擇 22 2.3 減震結構物模型介紹 26 第三章、半主動控制法設計 30 3.1 限幅最佳化控制法 30 3.2 能量最佳化控制法 34 3.2.1 減震力參考訊號設計 35 3.2.2 梯度動力學法 37 第四章、實驗設備與實驗方法 40 4.1 實驗組立與實驗設備介紹 41 4.1.1 實驗組立與訊號流程圖 42 4.1.2 實驗設備介紹 44 4.2 磁流變阻尼器之參數識別實驗方法 49 4.3 半主動減震控制之動態次結構系統測試方法 51 第五章、模擬與實驗結果 53 5.1 磁流變阻尼器之參數識別與其分析 53 5.2 結構半主動減震之模擬驗證 58 5.3 結構半主動減震之實驗驗證 64 5.4 結構半主動減震之模擬與實驗結果分析 98 5.4.1 模擬結果之分析 99 5.4.2 實驗結果之分析 101 第六章、結論及未來工作 106 6.1 結論 106 6.2 未來工作 107 參考資料 108

    1. B.F. Spencer Jr, S.J. Dyke, M.K. Sain and J.D. Carlson, Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics, 1997. 123(3): pp. 230-238.
    2. S.J. Dyke, B.F. Spencer Jr, M.K. Sain,J.D. Carlson, Modeling and control of magnetorheological dampers for seismic response reduction. Smart Materials & Structures, 1996. 5(5): pp. 565-575.
    3. L.Y. Lu, G.L. Lin, M.H. Shih, An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation. 2012. 34: pp. 111-123.
    4. P.Y. Lin, P.N. Roschke, C.H. Loh, L.L Chung and C.P Chang, Semi-Active Control of a Structure with an MR Damper. 國家地震工程研究中心, 2002.
    5. S.K. Huang and C.H. Loh, Combination of decentralized sliding mode control and online wavelet analysis for control of equipment with isolation system. Structural Control and Health Monitoring, 2019. 26(5), e2339.
    6. H.S. Kim, P.N. Roschke, Design of fuzzy logic controller for smart base isolation system using genetic algorithm. 2006. 28(1): pp. 84-96.
    7. S. Yan, W. Zheng and G. Song, GA-optimized fuzzy logic control of high-rise building for wind loads. in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009. 2009. International Society for Optics and Photonics.
    8. L. Li, G. Song, J. Ou, Nonlinear structural vibration suppression using dynamic neural network observer and adaptive fuzzy sliding mode control. 2010. 16(10): pp. 1503-1526.
    9. Z.S. Huang, C. Wu and D.S. Hsu, Semi-active fuzzy control of mr damper on structures by genetic algorithm. 2009. 25(1): pp. N1-N6.
    10. H.P. Yeh, Development of Magnetorheological damper based on Duffing-Like model for semi-active control. Power Mechanical Engineering, National Tsing Hua University, 2017.
    11. J.C. Ke, Development of semi-active control for vibration reduction of structural systems using Duffing-like model and magnetorheological damper. Power Mechanical Engineering, National Tsing Hua University, 2018.
    12. Y.C. Fan, Performance and reliability analysis of semi-active equipment isolation system. Master Thesis, 2008.
    13. P.Y. Lin, P.N. Roschke, C.J. Loh, Hybrid base‐isolation with magnetorheological damper and fuzzy control. 2007. 14(3): pp. 384-405.
    14. B. Mehrkian, A. Bahar, A.J. Chaibakhsh and H. Monitoring, Semiactive conceptual fuzzy control of magnetorheological dampers in an irregular base‐isolated benchmark building optimized by multi‐objective genetic algorithm. 2019. 26(3): p. e2302.
    15. S.J. Dyke, B.F Spencer Jr, M. Sain and J.D. Carlson, Seismic response reduction using magnetorheological dampers. 1996. 29(1): pp. 5530-5535.
    16. L.M. Jansen and S.J. Dyke, Semiactive control strategies for MR dampers: comparative study. 2000. 126(8): pp. 795-803.
    17. F. Yi, S.J. Dyke, J.M. Caicedo and J.D. Carlson, Experimental verification of multiinput seismic control strategies for smart dampers. 2001. 127(11): pp. 1152-1164.
    18. O. Yoshida and S.J. Dyke, Seismic control of a nonlinear benchmark building using smart dampers. 2004. 130(4): pp. 386-392.
    19. O. Yoshida and S.J. Dyke, Response control of full-scale irregular buildings using magnetorheological dampers. 2005. 131(5): pp. 734-742.
    20. Y.J. Cha, J. Zhang, A.K. Agrawal, B. Dong, A. Friedman, S.J. Dyke and J.J. Ricles, Comparative studies of semiactive control strategies for MR dampers: pure simulation and real-time hybrid tests. 2013. 139(7): pp. 1237-1248.
    21. M.L. Brodersen, G. Ou, J. Høgsberg and S.J. Dyke, Analysis of hybrid viscous damper by real time hybrid simulations. 2016. 126: pp. 675-688.
    22. M. Wallace, D. Wagg, S.J. Neild, An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring. 2005. 461(2064): pp. 3807-3826.
    23. S. Neild, D. Stoten, D. Drury, D.J. Wagg and S. dynamics, Control issues relating to real‐time substructuring experiments using a shaking table. 2005. 34(9): pp. 1171-1192.
    24. D.P. Stoten, J.Y. Tu, G. Li, Synthesis and control of generalized dynamically substructured systems. 2009. 223(3): pp. 371-392.
    25. S.Y. Chu, L.Y. Lu and S.W. Yeh, Real‐time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table. Structural Control and Health Monitoring. 2018. 25(3): e2124.
    26. J.Y. Tu, T.Y. Chen, P.Y. Lin, Using Duffing equation to model magnetorheological damper dynamics. in The 6th world conference on structural control and monitoring, Barcelona, Spain, 2014.
    27. H.J. Chi, Control Development of Magnetorheological Damper USing Duffing-like Model. Power Mechanical Engineering, National Tsing Hua University, 2015.
    28. H.P. Yeh, Y.C. Chien and J.Y. Tu. Identification of Hysteresis Dynamics Using Duffing-Like and Bouc-Wen Models. in ASME 2016 Conference on Information Storage and Processing Systems. 2016. American Society of Mechanical Engineers.
    29. G. Duffing, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. 1918: F. Vieweg & sohn.
    30. J.Y. Tu, P.Y. Lin, and T.Y. Cheng, Continuous hysteresis model using Duffing-like equation. 2015. 80(1-2): pp. 1039-1049.
    31. 徐安, 即時複合實驗於互制式減震系統之驗證, 土木工程學系, 國立成功大學 2019 (指導教授:盧煉元)
    32. L.Y. Lu, C.C. Lin, G.L. Lin, C.Y. Lin, Experiment and analysis of a fuzzy-controlled piezoelectric seismic isolation system. 2010. 329(11): pp. 1992-2014.
    33. G.F. Franklin, J.D. Powell, A. Emami-Naeini and J.D. Powell, Feedback control of dynamic systems. Vol. 3. 1994: Addison-Wesley Reading, MA.
    34. Y. Zhang, Y. Wang, Y. Yin, H. Tan and Q. Zeng. Theory and substantiation of z0g1 controller conquering singularity problem of output tracking for a class of nonlinear system. in 2014 IEEE 17th International Conference on Computational Science and Engineering. 2014. IEEE.
    35. G. Yan and L.L. Zhou, Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers. Journal of sound and vibration. 2006. 296(1-2): pp. 368-382.
    36. Q.P. Ha, M.T. Nguyen, J. Li and N.M. Kwok, Smart structures with current-driven MR dampers: Modeling and second-order sliding mode control. IEEE/ASME Transactions on Mechatronics. 2013. 18(6): pp. 1702-1712.

    QR CODE