簡易檢索 / 詳目顯示

研究生: 廖曼伶
Ling, Liao-Man
論文名稱: 以微米球微影技術製備有序矽奈米柱陣列及其光電性質研究
Fabrication of the ordered silicon nanorod array through the microsphere lithography method and investigations on its photovoltaic properties
指導教授: 吳振名
Wu, Jenn-Ming
戴念華
Tai, Nyan-Hwa
口試委員: 李紫原
Lee, Chi-Young
洪傳獻
Hong, Sam
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: 矽奈米柱太陽能電池抗反射性質微米球微影法
外文關鍵詞: Si nanorods, solar cell, anti-reflection, microsphere lithography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用微米球自組裝的特性,於矽基板上旋塗單層排列之PS球,並以電漿轟擊縮小球的尺寸,以此為模板進行金屬輔助化學蝕刻,藉由改變電漿轟擊及浸泡蝕刻溶液的時間,可以精準控制矽奈米柱的直徑與長度。由可見光光譜儀分析其反射率,發現越長的矽奈柱具有越低的反射率,適合作為太陽能電池的抗反射層,然而電化學蝕刻反應在矽奈米柱表面產生許多缺陷,進而限制載子的傳遞。因此,本研究在矽晶片上製備出不同長度及線徑的奈米柱陣列,以旋塗摻雜法進行多次磷擴散,並濺鍍金屬電極組裝成太陽能電池,探討不同微觀結構及載子濃度對太陽電池光電轉換效率的影響。其實驗結果顯示,當矽奈米柱陣列長度800 nm,線徑720 nm時進行兩次磷擴散後組成之電池具有最佳之效率值6.79%,與矽平板太陽能電池比較,約有22%之增幅。


    To improve anti reflection and enhance the p-n junction of a Si-based solar cell, single-layer polystyrene spheres (PS) were self-assembled onto Si substrates by spin coating followed by plasma treatment for reducing the size of PS spheres. The reduced spheres were used as a template for synthesizing Si nanorods (SiNRs) through the metal-assisted chemical etching process. Using this method, diameter and height of the SiNRs can be accurately controlled. Reflectivity of the silicon nanorods was tested by the UV/vis spectrometer, it is found that longer nanorods are more effective for light trap and absorption, which is applicable as an anti-reflection layer in solar cells. However, the etching process for silicon nanorods will cause surface defects, which limits the carrier transfer. In order to study the effects of SiNR dimension on the performance of Si-based solar cell and measured the conversion efficiency of the solar cell using SiNR array as the antireflection layer, this work fabricated SiNR array with different length and diameter. Phosphorus doping was performed using the spin-on-doping (SOD) technique. According to the results, SiNR solar cell with 720 nm in diameter and 800 nm in length, subjected to phosphorus doping for two times reveals a high performance with an efficiency of 6.79%, which is 22% higher than that of planar one.

    目錄 摘要 I Abstract II 致謝 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 概述 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1太陽能電池基本原理 5 2.1.1 光伏效應 5 2.1.2 太陽電池工作原理 5 2.1.3 太陽能電池等效電路模型 8 2.1.4 各類太陽能電池發展現況 10 2.2矽奈米柱太陽能電池 11 2.3 矽奈米線的發展及製備方法 12 2.3.1 無電極金屬沉積法 13 2.3.2 預沉積金屬輔助化學蝕刻法 14 2.3.3 搭配模板之金屬輔助化學蝕刻 16 第三章 實驗步驟與研究方法 26 3.1 實驗設計流程 26 3.2 實驗設備 27 3.2.1 實驗用氣體及藥品 27 3.2.2 儀器介紹 27 3.3 實驗步驟 29 3.3.1 實驗前處理 29 3.3.2 以微米球為模板配合金屬輔助化學蝕刻矽奈米柱 29 3.3.4 太陽能電池元件製備 31 3.4 試片分析 32 3.4.1 掃描式電子顯微鏡 32 3.4.2 紫外光/可見光吸收光譜儀 33 3.4.3 展部電阻量測 33 3.4.4 電流-電壓特性曲線量測 34 3.4.5入射光轉換效率量測 34 第四章 結果與討論 44 4.1 矽奈米柱陣列之微觀結構觀察 44 4.2 矽奈米柱陣列之抗反射特性 48 4.3 矽奈米柱太陽能電池特性 49 4.3.1太陽能電池接面之形成 50 4.3.2 矽奈米柱長度對光電性質之影響 51 4.3.3 矽奈米柱線徑對光電性質之影響 53 4.3.4 擴散濃度對光電性質之影響 56 第五章 結論 77 第六章 參考文獻 79 表目錄 表2 - 1 各類型太陽能電池發展現況 19 表3 - 1 標準RCA清洗法之流程 36 表4 - 1 矽晶片太陽能電池效率的量測結果 59 表4 - 2不同矽奈米柱陣列長度製作太陽能電池效率之量測結果 60 表4 - 3以不同矽奈米柱陣列線徑製作太陽能電池效率之量測結果 60 表4 - 4不同矽奈米柱陣列長度以50 %SOD溶液為磷擴散來源製作太陽能電池效率之量測結果 61 表4 - 5不同矽奈米柱陣列長度以75 %SOD溶液為磷擴散來源製作太陽能電池效率之量測結果 61 表4 - 6 不同矽奈米柱陣列線徑經擴散兩次後製作太陽能電池效率之量測結果 62 表4 - 7 以不同矽奈米柱陣列線徑經擴散三次後製作太陽能電池效率之量測結果 62   圖目錄 圖1 - 1 太陽能電池的種類 4 圖1 - 2 太陽光譜圖 4 圖2 - 1基本p-n接面組成的太陽能電池 20 圖2 - 2 太陽能電池的電壓-電流特性 20 圖2 - 3 太陽能電池的等效電路模型 21 圖2 - 4 (a)串聯電阻對太陽電池電流-電壓特性的影響;(b)並聯電阻對太陽電池電流-電壓特性的影響;(c)兩者同時存在對太陽電池電流-電壓特性的影響 22 圖2 - 5 PERL太陽能電池結構 23 圖2 - 6 以矽奈米柱陣列製備之徑向p-n接面太陽能電池示意圖 23 圖2 - 7 矽奈米柱太陽能電池p-n接面結構示意圖 24 圖2 - 8 金屬輔助化學蝕刻反應過程示意圖 24 圖2 - 9 以奈米球微影技術搭配金屬輔助化學蝕刻法之示意圖 25 圖2 - 10 以原始尺寸260 nm之PS球利用RIE縮小至(a),(b)100 nm及(c),(d)180 nm做模板,蝕刻所得之奈米線的俯視圖;(e)-(h)分別為蝕刻時間4分鐘,8分鐘,12分鐘,16分鐘所得之奈米線的剖面圖 25 圖3 - 1 實驗設計流程 37 圖3 - 2 矽奈米柱太陽能電池元件結構示意圖 37 圖3 - 3 矽奈米柱陣列製備流程 39 圖3 - 4 矽奈米柱陣列太陽能電池之製備流程 42 圖3 - 5 展阻量測示意圖 43 圖3 - 6 IV曲線量測實景圖 43 圖4 - 1 分散劑對於PS球塗佈的影響 63 圖4 - 2 將250 nm(a)(b)及1 μm(c)(d)的PS球以旋塗的方式塗佈在矽基板表面,所得到的單層結構 63 圖4 - 3 (a)為將原始尺寸1μm之PS球;經電漿轟擊(b)5分鐘(c)7分鐘(d)9分鐘之俯視圖 64 圖4 - 4 PS球的直徑與電漿轟擊時間的關係圖 64 圖4 - 5 銀薄膜厚度對矽奈米柱表面形貌的影響 65 圖4 - 6 濺鍍50 nm的銀薄膜於試片表面(a),再利用超音波震盪的方式將PS球舉離(b) 65 圖4 - 7 以1μm之PS球進行電漿轟擊後濺鍍銀薄膜於其表面,(a)為剖面圖;(c)為俯視圖;(e)為PS球舉離後留下的銀薄膜:(b)(d)(h)則是在電漿轟擊後先將試片加熱,之後再進行銀的濺鍍所得到的銀薄膜表面形貌 66 圖4 - 8 以250 nm的PS球電漿轟擊後作為模板進行蝕刻所得到的矽奈米線陣列,圖(a)為俯視圖;(b)-(d)為分別蝕刻2分鐘,4分鐘及6分鐘之截面圖 67 圖4 - 9以無電鍍沉積法化學蝕刻之矽奈米線 67 圖4 - 10 以1um PS球電漿轟擊 9分鐘做模板蝕刻之奈米柱陣列俯視圖(a);(b)-(d)分別為蝕刻一分鐘、三分鐘、五分鐘所得之矽奈米柱的剖面圖 68 圖4 - 11以1um PS球電漿轟擊 17分鐘做模板蝕刻之奈米柱陣列俯視圖(a);(b)-(d)分別為蝕刻一分鐘、三分鐘、五分鐘所得之矽奈米柱的剖面圖 69 圖4 - 12 不同長度之矽奈米柱的反射光譜 70 圖4 - 13 不同線徑之矽奈米柱的反射光譜 70 圖4 - 14 不同擴散條件的平板矽太陽能電池IV特性曲線 71 圖4 - 15 對p-type 矽晶片進行磷擴散之摻雜濃度與擴散深度關係圖 71 圖4 - 16以不同長度之奈米柱製作的太陽能電池IV特性曲線 72 圖4 - 17 以不同長度之奈米柱製作的太陽能電池IPCE光譜圖 72 圖4 - 18 以不同線徑之奈米柱製作的太陽能電池IV特性曲線 73 圖4 - 19 以不同線徑之奈米柱製作的太陽能電池IPCE光譜圖 73 圖4 - 20不同長度矽奈米柱以75 %SOD溶液做擴散來源製作的太陽能電池IV特性曲線 74 圖4 - 21不同長度矽奈米柱以50 %SOD溶液做擴散來源製作的太陽能電池IV特性曲線 74 圖4 - 22 以不同線徑之奈米柱擴散兩次製作的太陽能電池IV曲線 75 圖4 - 23 以不同線徑之奈米柱擴散兩次製作的太陽能電池IPCE圖 75 圖4 - 24 以不同線徑之奈米柱擴散三次製作的太陽能電池IV曲線 76 圖4 - 25以不同線徑之奈米柱擴散三次製作的太陽能電池IPCE圖 76

    [1] 黃惠良等著,“太陽電池” ,台北市,五南圖書(2008).
    [2] D. A. Neamen, “Semiconductor physics and devices: basic principles (3rd Edition)”, Dubuque, McGraw-Hill (2003).
    [3] M. A. Green, “Solar cells: operating principles, technology, and system applications”, Englewood Cliffs, Prentice-Hall (1982).
    [4] 濱川圭弘,“光電太陽電池設計與應用”,台北市,五南圖書 (2009).
    [5] A. Luque and S. Hegedus, “Handbook of photovoltaic science and engineering”, Hoboken, John Wiley & Sons Ltd, (2003).
    [6] P. Bhattacharya, “Semiconductor optoelectronic devices (2nd Edition)”, London, Prentice Hall (1997).
    [7] A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review”, Progress in Photovoltaics, Vol. 8, pp. 473-487 (2000).
    [8] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. Dunlop, “Solar cell efficiency tables (version 39)”, Progress in Photovoltaics: Research and Applications, Vol. 20, pp. 12-20 (2012).
    [9] J. Zhao, A. Wang and M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates”, Solar Energy Materials and Solar Cells, Vol. 65, pp. 429-435 (2001).
    [10] C. Delerue, G. Allan and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon”, Physical Review B, Vol. 48, pp. 11024–11036 (1993).
    [11] S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays”, Solar Energy Materials & Solar Cells, Vol. 94, pp. 1506-1511 (2010).
    [12] E. A. Dalchiele, F. Martín, D. Leinen, R. E. Marotti and J. R. Ramos-Barrado, “Synthesis, structure and photoelectron chemical properties of single crystalline silicon nanowire arrays”, Thin Solid Films, Vol. 518, pp.1804-1808 (2010).
    [13] L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications”, Nano Letters, Vol. 7, pp. 3249–3252 (2007).
    [14] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications”, Nature Materials, Vol. 9, pp. 239–244 (2010).
    [15] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications”, Small, Vol. 1, pp. 1062-1067 (2005).
    [16] X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cells”, Journal of Applied Physics, Vol. 108, pp. 124303–124307 (2010).
    [17] Z. Li, J. Wang, N. Singh and S. Lee, “Optical and electrical study of core-shell silicon nanowires for solar applications”, Optical Society of America, Vol. 19, pp. A1057-A1066 (2011).
    [18] V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk and S.H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties and cell parameters”, Nano Letters, Vol. 9, pp. 1549-1554 (2009).
    [19] B. M. Kayes and H. A. Atwater, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells”, Journal of Applied Physics, Vol. 97, pp. 114302-114312 (2005).
    [20] J. Zhu and Y. Cui, ”Photovoltaics: more solar cells for less”, nature materials, Vol. 9, pp. 183 - 184 (2010).
    [21] B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C.M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources”, Nature, Vol. 449, pp. 885-889 (2007).
    [22] L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima and J. Rand, “Silicon nanowire solar cells”, Applied Physics Letters, Vol. 91, pp. 233117-1 – 233117-3 (2007).
    [23] E. Garnett, M. L. Brongersma, Y. Cui and M. D. McGehee, “Nanowire solar cells”, Annual Review of Materials Research, Vol. 41, pp. 269-295 (2011).
    [24] H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths”, Applied Physics Letters, Vol. 96, pp. 213503-1 - 213503-3 (2010).
    [25] T. Qiu, X. L. Wu, X. Yang, G. S. Huang and Z. Y. Zhang, “Self-assembled growth and optical emission of silver-capped silicon nanowires”, Applied Physic Letters, Vol. 84, pp. 3867-3869 (2004).
    [26] J. Huang, S. Y. Chiam, H. H. Tan, S. Wang and W. K. Chim, “Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays as a hard mask blocking material in chemical etching”, Chemistry of Materials, Vol. 22, pp. 4111-4116 (2010).
    [27] J. C. Shin, D. Chanda, W. Chern, K. J. Yu, J. A. Rogers and X. Li, “Experimental study of design parameters in silicon micropillar array solar cells produced by soft lithography and metal-assisted chemical etching”, IEEE journal of photovoltaics, pp. 1-5 (2012).
    [28] H. J. Choi, S. Baek, H. S. Jang, S. B. Kim, B.Y. Oh and J. H. Kim, “Optimization of metal-assisted chemical etching process in fabrication of p-type silicon wire arrays”, Current Applied Physics, Vol. 11, pp. S25-S29 (2010).
    [29] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching”, Nano Letters, Vol. 8, pp. 3046–3051 (2008).
    [30] H. Morinaga, M. Suyama and T. Ohmi, “Mechanism of metallic particles growth and metal-induced pittings on Si wafer surface in wet chemical processing”, Journal of Electrochemical Society, Vol.151, pp. 2834-2841 (1994).
    [31] Z. Huang, N. Geyer, P. Werner, J. de Boor and U. Gösele, “Metal-assisted chemical etching of silicon: a review”, Advanced Materials, Vol. 23, pp. 285-308 (2011).
    [32] K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition”, Advanced Functional Materials, Vol. 13, pp. 127-132 (2003).
    [33] T. Qiu, X. L. Wu, G. G. Siu and Paul K. Chu, “Intergrowth mechanism of silicon nanowires and silver dendrites”, Journal of Electronic Materials, Vol. 35, pp. 1879-1884 (2006).
    [34] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physics Letters, Vol. 77, pp. 2572-2574 (2000).
    [35] K. Tsujino and M. Matsumura, "Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst", Electrochemical and Solid State Letters, Vol. 8, pp. C193-C195 (2005).
    [36] S. Chattopadhyay, X. L. Li and P. W. Bohn, "In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching", Journal of Applied Physics, Vol. 91, pp. 6134-6140 (2002).
    [37] X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics”, Current Opinion in Solid State and Materials Science,Vol. 16, pp. 71-81 (2011).
    [38] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina”, Science, Vol. 268, pp. 1466-1468 (1995).
    [39] W. K. Choi, T. H. Liew, M. K. Dawood, Henry I. Smith, C. V. Thompson and M. H. Hong, “Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching”, Nano Letters, Vol. 8, pp. 3799–3802 (2008).
    [40] A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. V. Duyne, “Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy”, Langmuir, Vol. 20, pp. 6927-6931 (2004).
    [41] Z. Huang, H. Fang and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density”, Advanced Materials, Vol. 19, pp. 744-748 (2007).
    [42] 汪建民,“材料分析”, 新竹市,中國材料科學學會 (1998).
    [43] 黃文雄,“儀器總覽-化學分析儀器”, 新竹市,行政院國家科學委員會精密儀器發展中心 (1998).
    [44] M. W. Denhoff, "An accurate calculation of spreading resistance ", Journal of Physics D: Applied Physics, Vol. 39 (2006).
    [45] J. Y. Jung, K. Zhou, H. D. Um, S. W. Jee, K. T. Park, Y. H. Nam, S. M. Shin and J. H. Lee, “A relation between a filling ratio and a length of silicon nanowires on their solar cell performances”, Optical Nanostructures and Advanced Materials for Photovoltaics (PV) (2011).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE