研究生: |
廖曼伶 Ling, Liao-Man |
---|---|
論文名稱: |
以微米球微影技術製備有序矽奈米柱陣列及其光電性質研究 Fabrication of the ordered silicon nanorod array through the microsphere lithography method and investigations on its photovoltaic properties |
指導教授: |
吳振名
Wu, Jenn-Ming 戴念華 Tai, Nyan-Hwa |
口試委員: |
李紫原
Lee, Chi-Young 洪傳獻 Hong, Sam |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 矽奈米柱 、太陽能電池 、抗反射性質 、微米球微影法 |
外文關鍵詞: | Si nanorods, solar cell, anti-reflection, microsphere lithography |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用微米球自組裝的特性,於矽基板上旋塗單層排列之PS球,並以電漿轟擊縮小球的尺寸,以此為模板進行金屬輔助化學蝕刻,藉由改變電漿轟擊及浸泡蝕刻溶液的時間,可以精準控制矽奈米柱的直徑與長度。由可見光光譜儀分析其反射率,發現越長的矽奈柱具有越低的反射率,適合作為太陽能電池的抗反射層,然而電化學蝕刻反應在矽奈米柱表面產生許多缺陷,進而限制載子的傳遞。因此,本研究在矽晶片上製備出不同長度及線徑的奈米柱陣列,以旋塗摻雜法進行多次磷擴散,並濺鍍金屬電極組裝成太陽能電池,探討不同微觀結構及載子濃度對太陽電池光電轉換效率的影響。其實驗結果顯示,當矽奈米柱陣列長度800 nm,線徑720 nm時進行兩次磷擴散後組成之電池具有最佳之效率值6.79%,與矽平板太陽能電池比較,約有22%之增幅。
To improve anti reflection and enhance the p-n junction of a Si-based solar cell, single-layer polystyrene spheres (PS) were self-assembled onto Si substrates by spin coating followed by plasma treatment for reducing the size of PS spheres. The reduced spheres were used as a template for synthesizing Si nanorods (SiNRs) through the metal-assisted chemical etching process. Using this method, diameter and height of the SiNRs can be accurately controlled. Reflectivity of the silicon nanorods was tested by the UV/vis spectrometer, it is found that longer nanorods are more effective for light trap and absorption, which is applicable as an anti-reflection layer in solar cells. However, the etching process for silicon nanorods will cause surface defects, which limits the carrier transfer. In order to study the effects of SiNR dimension on the performance of Si-based solar cell and measured the conversion efficiency of the solar cell using SiNR array as the antireflection layer, this work fabricated SiNR array with different length and diameter. Phosphorus doping was performed using the spin-on-doping (SOD) technique. According to the results, SiNR solar cell with 720 nm in diameter and 800 nm in length, subjected to phosphorus doping for two times reveals a high performance with an efficiency of 6.79%, which is 22% higher than that of planar one.
[1] 黃惠良等著,“太陽電池” ,台北市,五南圖書(2008).
[2] D. A. Neamen, “Semiconductor physics and devices: basic principles (3rd Edition)”, Dubuque, McGraw-Hill (2003).
[3] M. A. Green, “Solar cells: operating principles, technology, and system applications”, Englewood Cliffs, Prentice-Hall (1982).
[4] 濱川圭弘,“光電太陽電池設計與應用”,台北市,五南圖書 (2009).
[5] A. Luque and S. Hegedus, “Handbook of photovoltaic science and engineering”, Hoboken, John Wiley & Sons Ltd, (2003).
[6] P. Bhattacharya, “Semiconductor optoelectronic devices (2nd Edition)”, London, Prentice Hall (1997).
[7] A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review”, Progress in Photovoltaics, Vol. 8, pp. 473-487 (2000).
[8] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. Dunlop, “Solar cell efficiency tables (version 39)”, Progress in Photovoltaics: Research and Applications, Vol. 20, pp. 12-20 (2012).
[9] J. Zhao, A. Wang and M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates”, Solar Energy Materials and Solar Cells, Vol. 65, pp. 429-435 (2001).
[10] C. Delerue, G. Allan and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon”, Physical Review B, Vol. 48, pp. 11024–11036 (1993).
[11] S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays”, Solar Energy Materials & Solar Cells, Vol. 94, pp. 1506-1511 (2010).
[12] E. A. Dalchiele, F. Martín, D. Leinen, R. E. Marotti and J. R. Ramos-Barrado, “Synthesis, structure and photoelectron chemical properties of single crystalline silicon nanowire arrays”, Thin Solid Films, Vol. 518, pp.1804-1808 (2010).
[13] L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications”, Nano Letters, Vol. 7, pp. 3249–3252 (2007).
[14] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications”, Nature Materials, Vol. 9, pp. 239–244 (2010).
[15] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications”, Small, Vol. 1, pp. 1062-1067 (2005).
[16] X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cells”, Journal of Applied Physics, Vol. 108, pp. 124303–124307 (2010).
[17] Z. Li, J. Wang, N. Singh and S. Lee, “Optical and electrical study of core-shell silicon nanowires for solar applications”, Optical Society of America, Vol. 19, pp. A1057-A1066 (2011).
[18] V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk and S.H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties and cell parameters”, Nano Letters, Vol. 9, pp. 1549-1554 (2009).
[19] B. M. Kayes and H. A. Atwater, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells”, Journal of Applied Physics, Vol. 97, pp. 114302-114312 (2005).
[20] J. Zhu and Y. Cui, ”Photovoltaics: more solar cells for less”, nature materials, Vol. 9, pp. 183 - 184 (2010).
[21] B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C.M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources”, Nature, Vol. 449, pp. 885-889 (2007).
[22] L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima and J. Rand, “Silicon nanowire solar cells”, Applied Physics Letters, Vol. 91, pp. 233117-1 – 233117-3 (2007).
[23] E. Garnett, M. L. Brongersma, Y. Cui and M. D. McGehee, “Nanowire solar cells”, Annual Review of Materials Research, Vol. 41, pp. 269-295 (2011).
[24] H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths”, Applied Physics Letters, Vol. 96, pp. 213503-1 - 213503-3 (2010).
[25] T. Qiu, X. L. Wu, X. Yang, G. S. Huang and Z. Y. Zhang, “Self-assembled growth and optical emission of silver-capped silicon nanowires”, Applied Physic Letters, Vol. 84, pp. 3867-3869 (2004).
[26] J. Huang, S. Y. Chiam, H. H. Tan, S. Wang and W. K. Chim, “Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays as a hard mask blocking material in chemical etching”, Chemistry of Materials, Vol. 22, pp. 4111-4116 (2010).
[27] J. C. Shin, D. Chanda, W. Chern, K. J. Yu, J. A. Rogers and X. Li, “Experimental study of design parameters in silicon micropillar array solar cells produced by soft lithography and metal-assisted chemical etching”, IEEE journal of photovoltaics, pp. 1-5 (2012).
[28] H. J. Choi, S. Baek, H. S. Jang, S. B. Kim, B.Y. Oh and J. H. Kim, “Optimization of metal-assisted chemical etching process in fabrication of p-type silicon wire arrays”, Current Applied Physics, Vol. 11, pp. S25-S29 (2010).
[29] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching”, Nano Letters, Vol. 8, pp. 3046–3051 (2008).
[30] H. Morinaga, M. Suyama and T. Ohmi, “Mechanism of metallic particles growth and metal-induced pittings on Si wafer surface in wet chemical processing”, Journal of Electrochemical Society, Vol.151, pp. 2834-2841 (1994).
[31] Z. Huang, N. Geyer, P. Werner, J. de Boor and U. Gösele, “Metal-assisted chemical etching of silicon: a review”, Advanced Materials, Vol. 23, pp. 285-308 (2011).
[32] K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition”, Advanced Functional Materials, Vol. 13, pp. 127-132 (2003).
[33] T. Qiu, X. L. Wu, G. G. Siu and Paul K. Chu, “Intergrowth mechanism of silicon nanowires and silver dendrites”, Journal of Electronic Materials, Vol. 35, pp. 1879-1884 (2006).
[34] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physics Letters, Vol. 77, pp. 2572-2574 (2000).
[35] K. Tsujino and M. Matsumura, "Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst", Electrochemical and Solid State Letters, Vol. 8, pp. C193-C195 (2005).
[36] S. Chattopadhyay, X. L. Li and P. W. Bohn, "In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching", Journal of Applied Physics, Vol. 91, pp. 6134-6140 (2002).
[37] X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics”, Current Opinion in Solid State and Materials Science,Vol. 16, pp. 71-81 (2011).
[38] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina”, Science, Vol. 268, pp. 1466-1468 (1995).
[39] W. K. Choi, T. H. Liew, M. K. Dawood, Henry I. Smith, C. V. Thompson and M. H. Hong, “Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching”, Nano Letters, Vol. 8, pp. 3799–3802 (2008).
[40] A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. V. Duyne, “Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy”, Langmuir, Vol. 20, pp. 6927-6931 (2004).
[41] Z. Huang, H. Fang and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density”, Advanced Materials, Vol. 19, pp. 744-748 (2007).
[42] 汪建民,“材料分析”, 新竹市,中國材料科學學會 (1998).
[43] 黃文雄,“儀器總覽-化學分析儀器”, 新竹市,行政院國家科學委員會精密儀器發展中心 (1998).
[44] M. W. Denhoff, "An accurate calculation of spreading resistance ", Journal of Physics D: Applied Physics, Vol. 39 (2006).
[45] J. Y. Jung, K. Zhou, H. D. Um, S. W. Jee, K. T. Park, Y. H. Nam, S. M. Shin and J. H. Lee, “A relation between a filling ratio and a length of silicon nanowires on their solar cell performances”, Optical Nanostructures and Advanced Materials for Photovoltaics (PV) (2011).