研究生: |
歐晟宗 Ou, Sheng-Zong |
---|---|
論文名稱: |
蓄電池/超電容供電電動車感應馬達驅動系統及雙向直流快速充電器之開發 DEVELOPMENT OF BATTERY/SUPERCAPACITOR POWERED EV IM DRIVE AND BIDIRECTIONAL DC FAST CHARGER |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
徐國鎧
Shyu, Kuo-Kai 曾萬存 Tseng, Wan-Tsun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 121 |
中文關鍵詞: | 電動車 、感應馬達 、間接式磁場導向 、弱磁 、電池 、超電容 、三相CLLC諧振轉換器 、雙向變頻器 、切換式整流器 |
外文關鍵詞: | EV, IM, indirect field-orientation, field-weakening, battery, SC, CLLC resonant converter, bidirectional inverter, SMR |
相關次數: | 點閱:56 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電動車係環保、零排放交通工具,將逐漸取代傳統內燃引擎車。在電動車之驅動,感應馬達仍為最常用者之一。為建立有關驅動技術,本論文開發以電池/超電容混合供電之電動車感應馬達驅動系統,並開發一隔離式雙向直流快速充電器,具快速良好充電特性及良好入電電力品質。
首先建構固定直流鏈電壓之電動車感應馬達驅動系統,做為研究平台。以所提間接磁場導向機構,強化馬達之解耦及轉矩產生特性。用以產生滑差轉速命令之轉子參數,由所提估測方式較準確得之。同時,透過適當之額定激磁電流設定,電流及速度控制器設計,獲得在額定轉速內之優良加減速及運轉特性。超過額定轉速,應用傳統之(1/wr)法進行弱磁控制,亦具良好之操控性能。
為於廣速度範圍具較佳效率,接著建構具可調壓直流鏈之電池/超電容供電驅動系統。超電容之加入,可強化馬達之加減速能力及延長電池壽命。電池及超電容個別經雙向介面轉換器接至變頻器直流鏈,展現個邊彈性。依據馬達轉速適當設定直流鏈電壓,使車輛有較高效率及較低之電池耗能。由所提濾波電流分離法,可降低電池之快速及短暫充/放電操作。
開發一隔離式直流快速充電器,提升車輛充電速度,同時車輛可充當虛擬電廠,施行車輛對電網之操作。電力電路具雙向操作能力,係由雙向三相變頻器及三相CLLC諧振轉換器組成。於電網對車輛充電模式,變頻器成為切換式整流器,具功率因數矯正功能。適當設計之CLLC諧振轉換器,具寬範圍電壓轉換比,以實現對車載電池之定電流充電。此外,零電壓切換特性,使其在高頻切換下具高轉換效率。
Electric vehicle (EV) is environmentally friendly and zero-emission transportation option that will be gradually employed to replace the internal combustion engine vehicles. In EV traction, induction motor (IM) is still one of the most commonly used motors. To establish the related the technologies, this thesis develops a battery/supercapacitor (SC) powered EV IM drive. In addition, a bidirectional isolated fast charger is developed. The fast and good charging characteristics with good line power quality are achieved.
The EV IM drive with fixed DC-link voltage is first established as the experimental platform. The improved indirect field-oriented (IFO) scheme is developed to enhance decoupling and developed torque characteristics. The rotor parameters used to set the slip angular speed command are more accurately obtained by the proposed estimation approach. Additionally, by properly setting the rated flux current and designing the current controller and speed controller, excellent acceleration and deceleration capabilities within the rated speed range are achieved. Over rated speed, the simple (1/wr) field-weakening method is applied to preserve satisfactory driving performance.
To improve the motor drive efficiencies over wide speed range, the battery/SC hybrid source powered IM drive with varied DC-link voltage is then developed. The motor acceleration and deceleration capabilities and the battery life extension can be achieved by adding the SC. Both battery and SC are respectively interfaced to the DC-link via individual bidirectional boost-buck converter with proper control. By properly setting the DC-link voltage based on the motor speed, the vehicle can achieve higher efficiency and lower battery consumed energy. By incorporating SC and utilizing the proposed filtering current separation method, the rapid and short charge/discharge operations of the battery can be reduced.
Finally, an isolated DC fast charger is developed. It not only enhances the battery charging speed but also can serve as a virtual power plant to perform the vehicle-to-grid discharging operation. To enable bidirectional operation, the power circuit structure consists of a bidirectional three-phase inverter and an isolated three-phase CLLC resonant converter. The inverter is operated as switching-mode rectifier in grid-to-vehicle (G2V) charging operation. The CLLC resonant converter achieves wide range of voltage conversion ratios to enable constant current charging of vehicle battery. Furthermore, due to the zero-voltage switching (ZVS) characteristics, it exhibits excellent conversion efficiency during high-frequency switching.
[1] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, April 2007, pp. 704-718.
[2] A. Emadi, Y. J. Lee and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2237-2245, June 2008.
[3] A. M. Lulhe and T. N. Date, “A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV),” in Proc. IEEE ICCICCT, pp. 632-636, 2015.
[4] N. Hashemnia and B. Asaei, “Comparative study of using different electric motors in the electric vehicles,” in Proc. IEEE ICEM, 2008, pp. 1-5.
[5] D. G. Dorrell, A. M. Knight, L. Evans, and M. Popescu, “Analysis and design techniques applied to hybrid vehicle drive machines—assessment of alternative IPM and induction motor topologies,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3690-3699, Oct. 2012.
[6] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, Dec. 2012.
[7] J. de Santiago, H. Brnhoff, B. Ekergurd, S. Eriksson, S. Ferhatovic, R. Waters, and H. Leijon, “Electrical motor drivelines in commercial all-electric vehicles: a review,” IEEE Trans. Veh. Technol. vol. 61, no. 2, pp. 475-484, Feb. 2012.
[8] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[9] K. Koga, R. Ueda and T. Sonoda, “Constitution of V/f control for reducing the steady-state speed error to zero in induction motor drive system,” IEEE Trans. Ind. Appl., vol. 28, no. 2, pp. 463-471, March-April 1992.
[10] A. Munoz-Garcia, T. A. Lipo and D. W. Novotny, “A new induction motor V/f control method capable of high-performance regulation at low speeds,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 813-821, Aug. 1998.
[11] K. Suzuki, S. Saito, T. Kudor, A. Tanaka, and Y. Andoh, “Stability improvement of V/F controlled large capacity voltage-source inverter fed induction motor,” in Proc. IEEE IAC, 2006, pp. 90–95.
[12] Z. Zhang, Y. Liu and A. M. Bazzi, “An improved high-performance open-loop V/F control method for induction machines,” in Proc. IEEE APEC, 2017, pp. 615-619.
[13] R. Gabriel, W. Leonhard and C. J. Nordby, “Field-oriented control of a standard ac motor using microprocessors,” IEEE Trans. Ind. Appl., vol. IA-16, no. 2, pp. 186-192, March 1980.
[14] T. M. Rowan, R. J. Kerkman and D. Leggate, “A simple on-line adaption for indirect field orientation of an induction machine,” IEEE Trans. Ind. Appl., vol. 27, no. 4, pp. 720-727, July-Aug. 1991.
[15] C. M. Liaw, Y. S. Kung and C. M. Wu, “Design and implementation of a high-performance field-oriented induction motor drive,” IEEE Trans. Ind. Electron., vol. 38, no. 4, pp. 275-282, Aug. 1991.
[16] D. J. Atkinson, P. P. Acarnley and J. W. Finch, “Observers for induction motor state and parameter estimation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1119-1127, Nov.-Dec. 1991.
[17] J. K. Seok, S. I. Moon and S. K. Sul, “Induction machine parameter identification using PWM inverter at standstill,” IEEE Trans. Energy Convers., vol. 12, no. 2, pp. 127-132, June 1997.
[18] A. Gastli, “Identification of induction motor equivalent circuit parameters using the single- phase test,” IEEE Trans. Energy Convers., vol. 14, no. 1, pp. 51-56, March 1999.
[19] J. L. Zamora and A. Garcia-Cerrada, “Online estimation of the stator parameters in an induction motor using only voltage and current measurements,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 805-816, May-June 2000.
[20] A. Boglietti, A. Cavagnino, L. Ferraris, and M. Lazzari, “Induction motor equivalent circuit including the stray load losses in the machine power balance,” IEEE Trans. Energy Convers., vol. 23, no. 3, pp. 796-803, Sept. 2008.
[21] L. Monjo, H. Kojooyan-Jafari, F. Córcoles, and J. Pedra, “Squirrel-cage induction motor parameter estimation using a variable frequency test,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 550-557, June 2015.
[22] X. Xu and D. W. Novotny, “Selecting the flux reference for induction machine drives in the field weakening region,” in Proc. IEEE IAS, 1991, pp. 361-367.
[23] F. Briz, A. Diez, M. W. Degner, and R. D. Lorenz, “Current and flux regulation in field-weakening operation [of induction motors],” IEEE Trans. Ind. Appl., vol. 37, no. 1, pp. 42-50, Jan.-Feb. 2001.
[24] L. Harnefors, K. Pietilainen and L. Gertmar, “Torque-maximizing field-weakening control: design, analysis, and parameter selection,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 161-168, Feb. 2001.
[25] M. S. Huang and C. M. Liaw, “Improved field-weakening control for IFO induction motor,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 2, pp. 647-659, April 2003.
[26] G. Gallegos-Lopez, F. S. Gunawan and J. E. Walters, “Current control of induction machines in the field-weakened region,” IEEE Trans. Ind. Appl., vol. 43, no. 4, pp. 981-989, July-Aug. 2007.
[27] M. Mengoni, L. Zarri, A. Tani, G. Serra, and D. Casadei, “Stator flux vector control of induction motor drive in the field weakening region,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 941-949, March 2008.
[28] R. D. Lorenz, T. A. Lipo and D. W. Novotny, “Motion control with induction motors,” in Proc. IEEE, Aug. 1994, pp. 1215-1240.
[29] C. M. Liaw and F. J. Lin, “A robust speed controller for induction motor drives,” IEEE Trans. Ind. Electron., vol. 41, no. 3, pp. 308-315, June 1994.
[30] L. Harnefors and H. P. Nee, “Model-based current control of AC machines using the internal model control method,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 133-141, Jan.-Feb. 1998
[31] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage- source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[32] F. B. del Blanco, M. W. Degner and R. D. Lorenz, “Dynamic analysis of current regulators for AC motors using complex vectors,” IEEE Trans. Ind. Appl., vol. 35, no. 6, pp. 1424-1432, Nov.-Dec. 1999.
[33] C. M. Liaw, Y. M. Lin and K. H. Chao, “A VSS speed controller with model reference response for induction motor drive,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1136- 1147, Dec. 2001.
[34] F. Barrero, A. Gonzalez, A. Torralba, E. Galvan, and L. G. Franquelo, “Speed control of induction motors using a novel fuzzy sliding-mode structure,” IEEE Trans. Fuzzy Syst. vol. 10, no. 3, pp. 375-383, June 2002.
[35] D. G. Holmes, B. P. McGrath and S. G. Parker, “Current regulation strategies for vector- controlled induction motor drives,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3680-3689, Oct. 2012.
[36] J. Talla, V. Q. Leu, V. Šmídl, and Z. Peroutka, “Adaptive speed control of induction motor drive with inaccurate model,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8532-8542, Nov. 2018.
[37] T. Schoenen, M. S. Kunter, M. D. Hennen, and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[38] S. Tenner, S. Gimther and W. Hofmann, “Loss minimization of electric drive systems using a DC/DC converter and an optimized battery voltage in automotive applications,” in Proc. IEEE VPPC, 2011, pp. 1-7.
[39] C. Yu, J. Tamura and R. D. Lorenz, “Optimum DC bus voltage analysis and calculation method for inverters/motors with variable DC bus voltage,” IEEE Trans. Ind. Appl. vol. 49, no. 6, pp. 2619-2627, Nov.-Dec. 2013.
[40] S. Wongprasert, T. Sapaklom and M. Konghirun, “Efficiency improvement of traction drive system with induction motor using dynamic DC-bus voltage adjustment over a wide speed range operation,” in Proc. IEEE ICEMS, 2020, pp. 940-944.
[41] P. Pescetto, A. Sierra-Gonzalez, E. Trancho, and G. Pellegrino, “Variable DC-link control strategy for maximum efficiency of traction motor drives,” in Proc. IEEE ECCE, 2021, pp. 4815-4821.
[42] I. Takahashi and Y. Ohmori, “High-performance direct torque control of an induction motor,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 257-264, March-April 1989.
[43] G. Buja, D. Casadei and G. Serra, “Direct torque control of induction motor drives,” in Proc IEEE ISIE, 1997, pp. TU2-TU8. vol.1.
[44] Jun-Koo Kang and S. K. Sul, “New direct torque control of induction motor for minimum torque ripple and constant switching frequency,” IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1076-1082, Sept.-Oct. 1999.
[45] D. Casadei, G. Serra and K. Tani, “Implementation of a direct control algorithm for induction motors based on discrete space vector modulation,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 769-777, July 2000.
[46] R. Ortega, N. Barabanov, G. Escobar, and E. Valderrama, “Direct torque control of induction motors: stability analysis and performance improvement,” IEEE Trans. Autom. Control, vol. 46, no. 8, pp. 1209-1222, Aug. 2001.
[47] N. R. N. Idris and A. H. M. Yatim, “Direct torque control of induction machines with constant switching frequency and reduced torque ripple,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 758-767, Aug. 2004.
[48] Z. Sorchini and P. T. Krein, “Formal derivation of direct torque control for induction machines,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1428-1436, Sept. 2006.
[49] H. Kubota and K. Matsuse, “Speed sensorless field-oriented control of induction motor with rotor resistance adaptation,” IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1219-1224, Oct. 1994.
[50] J. Holtz, “Sensorless control of induction motor drives,” in Proc. IEEE, vol. 90, no. 8, pp. 1359-1394, Aug. 2002.
[51] Y. Yoon and S. Sul, “Sensorless control for induction machines based on square-wave voltage injection,” IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3637-3645, July 2014.
[52] I. Benlaloui, S. Drid, L. Chrifi-Alaoui, and M. Ouriagli, “Implementation of a new MRAS speed sensorless vector control of induction machine,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 588-595, June 2015.
[53] M. Nemec, D. Nedeljkovic and V. Ambrozic, “Predictive torque control of induction machines using immediate flux control,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2009-2017, Aug. 2007.
[54] E. S. de Santana, E. Bim and W. C. do Amaral, “A predictive algorithm for controlling speed and rotor flux of induction motor,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4398-4407, Dec. 2008.
[55] Y. B. Zbede, S. M. Gadoue and D. J. Atkinson, “Model predictive MRAS estimator for sensorless induction motor drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3511-3521, June 2016.
[56] C. M. Liaw and J. B. Wang, “Design and implementation of a fuzzy controller for a high performance induction motor drive,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 4, pp. 921-929, Aug. 1991.
[57] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, April 2007, pp. 806-820.
[58] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, June 2008.
[59] A. L. Allegre, A. Bouscayrol and R. Trigui, “Influence of control strategies on battery/ supercapacitor hybrid Energy Storage Systems for traction applications,” in Proc. IEEE VPPC, 2009, pp. 213-220.
[60] A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2806-2814, July. 2010.
[61] A. L. Allègre, R. Trigui and A. Bouscayrol, “Different energy management strategies of Hybrid Energy Storage System (HESS) using batteries and supercapacitors for vehicular applications,” in Proc. IEEE VPPC, 2010, pp. 1-6.
[62] J. Cao and A. Emadi, “A new battery/ultraCapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, May 2011.
[63] H. Xiaoliang, T. Hiramatsu and H. Yoichi, “Energy management strategy based on frequency-varying filter for the battery supercapacitor hybrid system of electric vehicles,” in Proc. IEEE EVS, 2013, pp. 1-6.
[64] H. H. Eldeeb, A. T. Elsayed, C. R. Lashway, and O. Mohammed, “Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2252-2262, June 2019.
[65] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, Oct. 2005.
[66] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics -- lead acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSim, 2015, pp. 444-450.
[67] S. S. G. Acharige, M. E. Haque, M. T. Arif, N. Hosseinzadeh, K. N. Hasan, and A. M. T. Oo, “Review of electric vehicle charging technologies, standards, architectures, and converter configurations,” IEEE Access, vol. 11, pp. 41218-41255, 2023.
[68] G. L. Bullard, H. B. Sierra-Alcazar, H. L. Lee, and J. L. Morris, “Operating principles of the ultracapacitor,” IEEE Trans. Magn., vol. 25, no. 1, pp. 102-106, Jan. 1989.
[69] S. Chopra, V. Prasanth, B. E. Mansouri, and P. Bauer, “A contactless power transfer — Supercapacitor based system for EV application,” in Proc. IEEE IECON, 2012, pp. 2860- 2865.
[70] Y. Parvini and A. Vahidi, “Optimal charging of ultracapacitors during regenerative braking,” in Proc. IEEE IEVC, 2012, pp. 1-6.
[71] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor-based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, Dec. 2012.
[72] Y. Parvini, J. B. Siegel, A. G. Stefanopoulou, and A. Vahidi, “Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1574-1585, March 2016.
[73] M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, Feb. 2010.
[74] A. Hintz, U. R. Prasanna and K. Rajashekara, “Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163-3172, May 2015.
[75] M. McDonough, “Integration of inductively coupled power transfer and hybrid energy storage system: a multiport power electronics interface for battery-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6423-6433, Nov. 2015.
[76] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, Aug. 2015.
[77] S. Qiu and B. Shi, “An enhanced battery interface of MMC-BESS,” in Proc. IEEE PEDG, 2019, pp. 434-439.
[78] N. Oswald, P. Anthony, N. McNeill, and B. H. Stark, “An experimental investigation of the tradeoff between switching losses and EMI generation with hard-switched all-Si, Si-SiC, and all-SiC device combinations,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2393-2407, May 2014.
[79] D. Han, J. Noppakunkajorn and B. Sarlioglu, “Comprehensive efficiency, weight, and volume comparison of SiC- and Si-based bidirectional DC-DC converters for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3001-3010, Sept. 2014.
[80] Y. Takatsuka, H. Hara, K. Yamada, A. Maemura, and T. Kume, “A wide speed range high efficiency EV drive system using winding changeover technique and SiC devices,” in Proc. IEEE IPEC, 2014, pp. 1898-1903.
[81] Texas Instruments, “Power topology considerations for electric vehicle charging stations,” Application Report, Sep. 2020.
[82] D. Aggeler, F. Canales, H. Zelaya-De La Parra, A. Coccia, N. Butcher, and O. Apeldoorn, “Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids,” in Proc. IEEE PES, pp. 1-8, 2010.
[83] T. Soeiro, T. Friedli and J. W. Kolar, “Three-phase high power factor mains interface concepts for electric vehicle battery charging systems,” in Proc. IEEE APEC, 2012, pp. 2603-2610.
[84] A. Arancibia and K. Strunz, “Modeling of an electric vehicle charging station for fast DC charging,” in Proc. IEEE IEVC, 2012, pp. 1-6.
[85] S. Rivera, B. Wu, S. Kouro, V. Yaramasu, and J. Wang, “Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 1999-2009, April 2015.
[86] H. Tu, H. Feng, S. Srdic, and S. Lukic, “Extreme fast charging of electric vehicles: a technology overview,” IEEE Trans. Transport. Electrific., vol. 5, no. 4, pp. 861-878, Dec. 2019.
[87] N. D. Dao, D. Lee and Q. D. Phan, “High-efficiency SiC-based isolated three-port DC/DC converters for hybrid charging stations,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10455-10465, Oct. 2020.
[88] Hengchun Mao, C. Y. Lee, D. Boroyevich, and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, Aug. 1997.
[89] R. Srinivasan and R. Oruganti, “A unity power factor converter using half-bridge boost topology,” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 487-500, May 1998.
[90] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
[91] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, June 2004.
[92] W. Y. Choi, J. M. Kwon, E. H. Kim, J. J. Lee, and B. H. Kwon, “Bridgeless boost rectifier with low conduction losses and reduced diode reverse-recovery problems,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 769-780, April 2007.
[93] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[94] C. Marxgut, F. Krismer, D. Bortis, and J. W. Kolar, “Ultraflat interleaved triangular current mode (TCM) single-phase PFC rectifier,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 873-882, Feb. 2014.
[95] S. Hiti, D. Borojevic, R. Ambatipudi, R. Zhang, and Yimin Jiang, “Average current control of three-phase PWM boost rectifier,” in Proc. IEEE PESC, 1995, pp. 131-137 vol.1.
[96] L. Huber, M. Kumar and M. M. Jovanović, “Performance comparison of pi and p compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7123-7137, Dec. 2015.
[97] N. Haryani, B. Sun and R. Burgos, “A novel soft switching ZVS, sinusoidal input boundary current mode control of 6-switch three phase 2-level boost rectifier for active and active + reactive power generation,” in Proc. IEEE APEC, 2018, pp. 8-1.
[98] J. Wang, S. Tezuka, K. Kajiwara, A. Segami, N. Matsui, and F. Kurokawa, “Design process of optimal dead-time for SiC MOSFET-based three-phase six-switch rectifier,” in Proc. IEEE ICRERA, 2021, pp. 381-384.
[99] M. N. Kheraluwala, R. W. Gascoigne, D. M. Divan, and E. D. Baumann, “Performance characterization of a high-power dual active bridge DC-to-DC converter,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1294-1301, Nov.-Dec. 1992.
[100] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Hersey: John Wiley & Sons, Inc., 2003.
[101] H. Bai and C. Mi, “Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC-DC converters using novel dual-phase-shift control,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2905-2914, Nov. 2008.
[102] A. K. Jain and R. Ayyanar, “PWM control of dual active bridge: comprehensive analysis and experimental verification,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1215-1227, April 2011.
[103] F. Krismer and J. W. Kolar, “Efficiency-optimized high-current dual active bridge converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2745-2760, July 2012.
[104] W. Chen, P. Rong and Z. Lu, “Snubberless bidirectional DC-DC converter with new CLLC resonant tank featuring minimized switching loss,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3075-3086, Sept. 2010.
[105] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, April 2013.
[106] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. -S. Lai, “Design of bidirectional DC-DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015.
[107] Y. C. Liu, C. Chen, K. D. Chen, Y. L. Syu, and N. A. Dung, “High-frequency and high-efficiency isolated two-stage bidirectional DC-DC converter for residential energy storage systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 8, no. 3, pp. 1994- 2006, Sept. 2020.
[108] A. Nabih, F. Jin, Q. Li, and F. C. Lee, “Soft start-up of three phase CLLC converter based on state trajectory control,” in Proc. IEEE APEC, 2021, pp. 1927-1932.
[109] Q. Okon, J. Urquizo, N. Kondrath, and P. Singh, “Control design for 3-phase bidirectional battery chargers with multiple battery charging capabilities for electric vehicle fleet applications,” in Proc. IEEE NAPS, 2021, pp. 01-06.
[110] S. A. Arshadi, M. Ordonez, W. Eberle, M. A. Saket, M. Craciun, and C. Botting, “Unbalanced three-phase LLC resonant converters: analysis and trigonometric current balancing,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2025-2038, March 2019.
[111] F. Jin, A. Nabih and Q. Li, “Light load efficiency improvement of three phase CLLC resonant converter for on-board charger applications,” in Proc. IEEE APEC, 2022, pp. 1-7.
[112] “Digital signal controller TMS320F28379 data sheet,” Available: https://www.ti.com/lit/ds/ symlink/tms320f28379d.pdf, 2017.
[113] “Super-capacitor BMOD0006 E160 B02 data sheet,” Available: https://www.maxwell.com/ images/documents/160VModule_DS_3000246_6.pdf, 2019.
[114] W. Q. Huang, “Grid-connected electric vehicle induction motor drive system” M.S. Thesis, Dept. Electr. Eng., Natl. Tsinghua Univ., Hsinchu, R.O.C., 2021.
[115] T. S. Cheng, “An electric vehicle induction motor drive with DC fast charging function” M.S. Thesis, Dept. Electr. Eng., Natl. Tsinghua Univ., Hsinchu, R.O.C., 2022.