研究生: |
田舜丞 Tien, Shun-Chengt |
---|---|
論文名稱: |
以矽奈米晶體為電荷儲存層之氮化鉭金屬閘極和氧化鋁介電層複晶矽快閃記憶體的研究 Study of Poly-Si Channel TANOS Flash Memory with Silicon Nanocrystals as Charge-Trapping Layer |
指導教授: |
吳永俊
Wu, Yung-Chun |
口試委員: |
李耀仁
林育賢 吳永俊 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 快閃記憶體 、浮停閘 、氮化鉭 、氧化鋁 、非揮發性記憶體 |
外文關鍵詞: | Flash memory, Floating gate, TaN, Al2O3, Nonvolatile memory, TANOS, SONOS |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著可攜式電子產品市場需求逐年增加,雖然快閃記憶體朝著低成本高密度發展,但是元件製程和物理的限制使得要繼續遵循摩爾定律變的更為困難。以三維堆疊式的複晶矽薄膜電晶體做為記憶體可提供超高密度記憶體一個良好的解決方案。
傳統TANOS快閃記憶體擁有快速的寫入/抹除 操作; 使用氧化鋁做為阻擋層能增加閘極耦合比; 氮化鉭做為金屬閘極能夠有效抑制電子由閘極注入而減慢抹除速度。熱退火可以提高氧化鋁的介電常數,但是在高溫熱退火條件下會使氧化鋁結晶,儲存在電荷儲存層中的電子會經由這些結晶的晶界流失到金屬閘極,此現象造成傳統TANOS可靠度問題,有研究團隊使用二氧化矽附蓋於氧化鋁之上或是使用能隙工程方式來改善TANOS可靠度問題,但這些方法會犧牲閘極耦合比以及寫入/抹除 速度。
在本研究中提出以矽奈米晶體做為電荷儲存層的TANOS複晶矽快閃記憶體能夠有效的改善傳統TANOS的寫入/抹除 速度和可靠度問題,而此元件擁有在高溫下(1500C)極佳的資料保存能力(>108 sec 的5 % 電子流失)。
擁有極佳性能的NCs-TANOS對於傳統非揮發性記憶體的尺寸微縮提供良好的解決方案,並能實際應用於三微堆疊式記憶體以及下一世代快閃記憶體。
The market demand for portable electric equipment increase dramatically year by year. Although Flash develop toward low cost and high density, following Moore’s law to continue the scaling due to the device fabrication and physics limitations of the device. The three-dimensional (3D) multi-layer-stack memory basing on poly-Si TFT is another path to ultra-high density memory.
The conventional TANOS NVM behaves fast P/E operations because Al2O3 blocking layer increases the gate coupling ratio, and TaN immunizes the gate injection. The dielectric constant of the Al2O3 can be enlarged by rapid thermal annealing, but high temperature causes Al2O3 to crystallize, resulting in stored charge leaking to gate. Using sealing SiO2 or bandgap engineering (BE) can reduce this leakage, but those may sacrifice the coupling ratio and P/E speed.
In this thesis, we propose TANOS TFT Flash memory with silicon nanocrystals (Si-NCs) as charge-trapping layer, and named it NCs-TANOS. NCs-TANOS can improve the progam/erase speed and reliability issues of the conventional TANOS NVM , and exhibits excellent high-temperature (850C) retention ( >108 sec for 5% charge loss).
The excellent performance NCs-TANOS that provides a promising solution to overcome the limitation of the conventional NVM for future scaling, 3D stack NVM and next generation Flash memory application.
Chapter 1
[1-1] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proceedings of IEEE, vol. 85, pp. 1248, 1997.
[1-2] K. Kahng and S. Sze, "A floating gate and its application to memory devices," IEEE Transactions on Electron Devices, vol. 14, pp. 629-629, 1967.
[1-3] Harari E., Schmitz L., Troutman B., and Wang S., “A 256 bit nonovolatile static RAM,” IEEE ISSCC Tech. Dig., pp. 152, 1978.
[1-4] Kynett V.N., Baker A., Frandrich M., Hoekstra G.,Jungroth O., Kreifels J., and Wells S., “ An in-system reprogrammable 256K CMOS Flash memory”, ISSCC Tec. Dig., pp.132, 1988.
[1-5] B. De Salvo, C. Gerardi, R. van Schaijk, “Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps,” IEEE Transactions on Devices and Materials reliability, vol. 4, pp. 377-389, 2004.
[1-6] Wegener H. A. R. et al, “The variable threshold transistor, a newly electrically alterable nondestructive read-only storage device,” IEDM Tech. Dig. 1967.
[1-7] F. R. Libsch and M. H. White, “Charge transport and storage of low programming voltage SONOS/MONOS memory devices,” Solid-State Electron., vol. 33, pp. 105—126, 1990.
[1-8] M. H. White, Y. Yang, A. Purwar, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” IEEE Trans. Comp., Packag., Manufact. Technol. A, vol. 20, pp. 190-195, June 1997.
[1-9] M. K. Cho and D. M. Kim, “High Performance SONOS Memory Cells Free of Drain Turn-On and Over-Erase: Compatibility Issue with Current Flash Technology,” IEEE Electron Device Letters, vol. 21, no. 8, Aug 2000.
[1-10] Y. H. Lin, C. H. Chien, C. T. Lin, C. Y. Chang, and T. F. Lei, “High-performance nonvolatile HfO2 nanocrystal memory,” IEEE Electron Device Letters, vol. 26, no. 3, pp. 154-156, Mar. 2005.
[1-11] B. Eitan, R. Kazerounian, A. Roy, G. Crisenza, P. Cappelletti, A. Modelli, W. Inc, and C. Fremont, “Multilevel flash cells and their trade-offs,” IEDM Tech. Dig., pp. 169-172, 1996.
[1-12] C. Y. Lu, K. Y. Hsieh, and Rich Liu, “Future challenges of flash memory technologies,” Microelectronic Engineering vol. 86, no. 3, pp. 283-286, 2009.
[1-13] C. H. Lee, K. I. C, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, ” A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memories,” IEDM Tech. Dig., pp. 26.5.1-26.5.4, 2003.
[1-14] C. H. Lee, S. H. Hur, Y. S. Shin, J. H. Choi, D. G. Park, and K. Kim, “A novel structure of SiO2/SiN/High k dielectrics, Al2O3 for SONOS type flash memory,” SSDM conf. Proc., pp. 162, 2002.
[1-15] K. Prall, “Scaling Non-volatile Memory Below 30nm,” in Proc. IEEE Non-Volatile Semicond. Memory Workshop, pp. 5-10, 2007.
[1-16] Rothschild A., Breuil L., Van den bosch G., Richard O., Conard T., Franquet A., Cacciato A., Debusschere I., Jurczak M., Van Houdt J., Kittl J.A., Ganguly U. , Date L., Boelen P., Schreutelkamp R., ”O2 post deposition anneal of Al2O3 blocking dielectric for higher performance and reliability of TANOS Flash memory,” in Proc. of ESSDERC, pp. 272-275, 2009.
[1-17] A. Furnemont, M. Rosmeulen, J. Van Houdt, H. Maes, and K. De Meyer, “Cycling behavior of nitride charge profile in NROM type memory cells,” in Proc. IEEE Non-Volatile Semicond. Memory Workshop, pp. 6, 2006.
[1-18] X. W. Wang, S. I. Shim, T. P. Ma, “Al2O3 as the Interpoly of Blocking Dielectric In Flash Memory,” Proc. of the 38th Semiconductor Interface Specialists Conference, pp. 15, 2007.
[1-19] Breuil L., Furnemont A., Rothschild A., Van den bosch G., Cacciato A., and Van Houdt J., “Improvement of TANOS NAND Flash performance by the optimization of a sealing layer,” in Proc. IEEE Non-Volatile Semicond. Memory Workshop, pp. 126-127, 2008.
[1-20] D. C. Gilmer, N. Goel, H. Park, C. Park, S. Verma, G. Bersuker, P. Lysaght, H. –H.
Tseng, P. D. Kirsch, K. C. Saraswat and R. Jammy, “Engineering the Complete MANOS-type NVM Stack for Best in Class Retention Performance,” IEDM Tech. Dig., pp. 17..5.1-17.5.4, 2009.
[1-21] G. Van den bosch, A. Furnemont, M. B. Zahid, R. Degraeve, L. Breuil, A. Cacciato, A. Rothschild, C. Olsen, U. Ganguly, J. Van Houdt, “Nitride engineering for improved erase performance and retention of TANOS NAND Flash memory,” in Proc. IEEE Non-Volatile Semicond. Memory Workshop, pp. 128-129, 2008.
[1-22] J. D. Choe, S. H. Lee, J. J. Lee, E. S. Cho, Y. Ahn, B. Y. Choi, S. K. Sung, J. No, I.
Chung, K. Park and D. Park, “Fin-type field-effect transistor NAND Flash with nitride/silicon nanocrystal/nitride hybrid trap layer,” Jpn. J. Appl. Phys., vol. 46, no. 4B, pp. 2197-2199, 2007.
[1-23] S. Choi, H. Choi, T. W. Kim, H. Yang, T. Lee, S. Jeon, C. Kim, and H. Hang, “High Density Silicon Nanocrystal Embedded in SiN Prepared by Low Energy (<500 eV) SiH4 Plasma Immersion Ion Implantation for Non-volatile Memory Applications,” IEDM Tech. Dig., pp. 166, 2005.
[1-24] T. Y. Chiang, T. S. Chao, Y. H. Wu, and W. L. Yang, “High-Program/Erase-Speed SONOS with In Situ Silicon Nanocrystals,” IEEE Electron Device Letters, vol. 29, pp. 1148-1151, 2008.
[1-25] M. F. Hung, J. H. Chen, Y. C. Wu, “Π-gate nanowires TANOS poly-Si TFT nonvolatile memory,” Silicon Nanoelectronics Workshop, pp. 1-2, 2010.
Chapter 2
[2-1] S. M. SZE, KWOK K. NG, “Physics of Semiconductor Devices” 3rd Ed., ch. 6, New Jersey: Wiley-InterScience, 2007.
[2-2] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proceedings of IEEE, Vol. 85, pp. 1248, 1997.
[2-3] M. Woods, “Nonvolatile Semiconductor Memories: Technologies, Design, and Application,” C. Hu, Ed. New York: IEEE Press, ch. 3, p.59, 1991.
[2-4] M. Lenzlinger, “Fowler-Mordheim Tunneling in thermal grown SiO2,” Appl. Phys. Lett., Vol. 40, pp. 278-283, 1969.
[2-5] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFETs,”IEEE J. Solid-State Circuits, Vol. 14, pp. 442,1979.
[2-6] B. Eitan and D. Frohman-Bentchkowsky, “Hot electron Injection into the Oxide in n-
Channel MOS-Devices,” IEEE Trans. Electron Devices., Vol. ED-28, p.328, 1981.
[2-7] C. Hu, “Lucky Electron Model of Hot Electron Emission,” IEDM Tech. Dig., 1979.
[2-8] Joe E. Brewer, Manzur Gill, “Nonvolatile Memory Technologies with Emphasis on
Flash,” ch. 4, New Jersey: Wiley-InterScience, 2008.
[2-9] I. C. Chen, C. Kaya and J. Paterson, “Band-to-band tunneling induced substrate hot-electron (BBISHE) injection: A new programming mechanism for nonvolatile memory devices,” IEDM, pp.263, 1989.
[2-10] K. San, C. Kaya, and T. Ma, "Effects of erase source bias on Flash EPROM device
reliability," IEEE Transactions on Electron Devices, vol. 42, pp. 150-159, 1995.
[2-11] T. Y Chan, J. Chen, P. K. Ko, and C. Hu, “The impact of gate-drain leakage current on MOSFET Scaling,” IEDM Tech. Dig., 1987, p.718.
[2-12] Roberto Bez, Emilic Camerlenghi, Alberto Modelli, and Angelo Visconti,“Introduction to Flash Memory,” Proc. IEEE, Vol. 91, pp. 489-502, 2003.
[2-13] J. Van Houdt, “Reliability Issues of Flash Memory,” short course of the 14th IEEE
Nonvolatile Semiconductor Memory Workshop Monterey, CA, 1995.
[2-14] D. A. Baglee and M. Smayling, ”The Effects of Write/Erase Cycling on Data Loss in
EEPROMs,” IEEE IEDM Tech. Dig., pp. 624-626, 1985.
[2-15] J. J. Lee, S. H. Lee, H. Chae, “Rentention Reliability of FinFET SONOS Device,”
IEEE 44th Annual International Reliability Physics Symposium, pp. 530, San Jose,
2006.
[2-16] Van Houdt J.F., Wellekens D., Ravazzi L., and Sangiorigi E., “Soft-programming in
scaled flash memory cells,” H.C. de Graaf and H.V. Kranemburg (Eds.), Proc. ESSDERC 95, The Hague (The Netherlands), pp. 549.
[2-17] P. Cappelletti, C. Golla, P. Olivo, E. Zanoni., “Flash Memories,” 2nd Ed., Norwell, Massachusetts: Kluwer Academic, 2000.
Chapter 4
[4-1] Jan De Blauwe, “Nanocrystal Nonvolatile Memory Devices,” IEEE Transcations on Electron Devices, vol. 1, pp. 72-77, 2002.