研究生: |
齊元培 Ci, Yuan-Pei |
---|---|
論文名稱: |
澱粉吸附區中不同醣類結合位之特性分析 Differential Roles of Two Ligand Binding Sites of Rhizopus oryzae Starch Binding Domain for Protein-Glycan Interaction |
指導教授: |
張大慈
Chang, Margaret Dah-Tsyr |
口試委員: |
張大慈
呂平江 孫玉珠 吳東昆 許文輝 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 澱粉吸附區 、醣類吸附模組 、恆溫滴定熱量計 、配體 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
米根黴菌 (Rhizopus oryzae) 葡萄糖水解酶 (glucoamylase) 的整體結構包含胺基端的澱粉吸附區 (starch binding domain、RoSBD)、羧基端的催化區及醣基化的連接片段。RoSBD隸屬於醣類吸附模組 (carbohydrate-binding module、 CBM) 家族二十一,能與顆粒狀生澱粉及可溶性多醣結合。核磁共振與結晶繞射解析之RoSBD三級結構證明其具有兩個配體結合位,分別由色胺酸47、酪胺酸83、酪胺酸93、及酪胺酸94組成第一個結合位;由酪胺酸32、苯丙胺酸58、及酪胺酸67組成第二個結合位。RoSBD與配體結合主要依靠芳香環胺基酸與醣類六角環形成疏水性交互作用。本研究首先以恆溫滴定熱量計 (ITC),螢光光譜,及顆粒澱粉結合飽和曲線分析 (depletion isotherm) 測量不同醣類與RoSBD結合的親合力,區分各種構形、長度、醣苷鍵組成的醣類與RoSBD親合力的差別。進一步以單點突變探討RoSBD兩個配體結合位對於可溶性醣類的結合力強弱,發現第二個結合位的酪胺酸32突變後,RoSBD與水溶性配體的親合力顯著地減弱。搭配結晶繞射結果發現RoSBD與醣類結合後,酪胺酸32的支鏈產生明顯位移翻轉,並與苯丙胺酸58形成一對結合鉗 (binding clamp) 共同穩定結合配體,證明酪胺酸32在RoSBD與可溶性醣類結合過程中扮演重要的角色。另外富含天門冬胺酸的兩段環 (polyN loop)結構亦會形成結合鉗,提供氫鍵以結合配體。本實驗室先前的研究已證明第一個結合位的色胺酸47主要負責與不可溶性醣類結合,因此本研究推論RoSBD兩個配體結合位扮演不同的醣類結合角色:第一個結合位中色胺酸47與富含天門冬胺酸的環會先和澱粉結合並促使澱粉螺旋狀結構鬆散,暴露出更多水溶性表面積,再由第二個結合位的酪胺酸32與苯丙胺酸58形成結合鉗,結合此水溶性澱粉表面使之更形鬆散以利酵素催化水解。本研究結合生物資訊分析,驗證RoSBD與配體結合的特性、兩個結合位角色及芳香環胺基酸的保留性,進一步統整SBD及CBM結構與功能之相關性。
Rhizopus oryzae glucoamylase is composed of an N-terminal starch binding domain (RoSBD, residues 26-131) and a C-terminal catalytic domain (residues 168-604) connected by an O-glycosylated linker (residues 132-167). RoSBD is categorized to carbohydrate binding modules (CBMs) family 21, and has been demonstrated to effectively adsorb onto raw starch and other soluble oligosaccharides. Three dimensional structures of RoSBD in the presence of a cyclic ligand β-cyclodextrin (βCD) or a linear maltoheptaose (G7) have been determined by NMR and X-ray crystallography. RoSBD possesses two ligand binding sites, residues Trp47, Tyr83, Tyr93, and Tyr94 constitute binding site I, and residues Tyr32, Phe58, and Tyr67 form binding site II. Hydrophobic interaction between the sugar rings of ligands and aromatic residues of RoSBD act as a key determinant of overall binding affinity and specificity. Here isothermal titration calorimetry (ITC), fluorescence spectrophotometry and depletion isotherm have been used to identify binding affinities of various glycans containing cyclic and linear linkages with special focus on the deterministic factors such as length, glycosidic linkage, ring size, and solubility of polysaccharides. Micromolar range binding affinities of different ligands are observed. In addition, to distinguish the affinity of two ligand binding sites, key binding residue of two sites, Trp47 in site I and Tyr32, Phe58 in site II are specifically mutated. Interestingly, Tyr32 mutant (Y32A) shows over 10 fold weaker binding affinity than wild-type RoSBD, strongly suggesting that Tyr32 plays a more important role in binding soluble glycans. X-ray crystallography results indicate that the side chain of Tyr32 significantly flips over to form a ligand binding clamp with Phe58 upon binding to either βCD or G7. In addition, unique polyN loops in binding site I form another ligand binding clamp to cooperatively interact with ligand through hydrogen bonding. The two binding sites of RoSBD appear to play distinct roles in ligand binding. Trp47 along with polyN loops initially bind to insoluble starch strands and force starch to twist apart to expose extensive surface for solvent access. In addition, Tyr32 and Phe58 in binding site II form a ligand binding clamp to coordinately bind to soluble starch with high binding affinity. Finally, bioinformatic analysis demonstrates binding properties, correlation of two ligand binding sites, and conservation of binding residues of RoSBD, which in turn leads to more understanding in structure-function relationship of SBD and CBM.
1. Buleon, A., et al., Starch granules: structure and biosynthesis. Int J Biol Macromol, 1998. 23(2): p. 85-112.
2. Ridout, M.J., et al., Atomic force microscopy of pea starch: origins of image contrast. Biomacromolecules, 2004. 5(4): p. 1519-27.
3. Torres, F.G., et al., Biodegradability and mechanical properties of starch films from Andean crops. Int J Biol Macromol, 2011. 48(4): p. 603-6.
4. Imberty, A., et al., The double-helical nature of the crystalline part of A-starch. J Mol Biol, 1988. 201(2): p. 365-78.
5. Greenwood, C.T., Aspects of the physical chemistry of starch. Adv Carbohydr Chem, 1956. 48(11): p. 335-85.
6. Buckow, R., et al., Pressure-temperature phase diagrams of maize starches with different amylose contents. J Agric Food Chem, 2009. 57(24): p. 11510-6.
7. Hiromi, K., et al., Kinetic studies on gluc-amylase. II. Competition between two types of substrate having alpha-1,4 and alpha-1,6 glucosidic linkage. J. Biochem. (Tokyo), 1966. 59(4): p. 411-8.
8. Sauer, J., et al., Glucoamylase: structure/function relationships, and protein engineering. Biochim. Biophys. Acta., 2000. 1543(2): p. 275-293.
9. Norouzian, D., et al., Fungal glucoamylases. Biotechnol. Adv., 2006. 24(1): p. 80-5.
10. Manjunath, P., B.C. Shenoy, and M.R. Raghavendra Rao, Fungal glucoamylases. J. Appl. Biochem., 1983. 5(4-5): p. 235-60.
11. Marin-Navarro, J. and J. Polaina, Glucoamylases: structural and biotechnological aspects. Appl Microbiol Biotechnol, 2011. 89(5): p. 1267-73.
12. Sorimachi, K., et al., Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure, 1997. 5(5): p. 647-61.
13. Reilly, P.J., Protein Engineering of Glucoamylase to Improve Industrial Performance - A Review Starch - Stärke, 1999. 51(8-9): p. 269-74.
14. Frandsen, T.P., H.P. Fierobe, and B. Svensson, Engineering specificity and stability in glucoamylase from Aspergillus niger in protein engineering in industrial biotechnology., ed. L. Alberghin. 1999: Amsterdam7 Harwood Academic. 189–206.
15. Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J, 1991. 280 ( Pt 2): p. 309-16.
16. Lin, S.C., et al., Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem, 2007. 8: p. 9.
17. Southall, S.M., et al., The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett, 1999. 447(1): p. 58-60.
18. Hayashida, S., et al., Characteristics and Function of Raw-starch-affinity Site on Aspergillus awamori var. kawachi Glucoamylase I Molecule. Agricultural and Biological Chemistry, 1989. 53(1): p. 143-149.
19. Ashikari, T., et al., Rhizopus Raw-Starch-Degrading Glucoamylase: Its Cloning and Expression in Yeast. Agricultural and Biological Chemistry, 1986. 50(4): p. 957-964.
20. Bui, D.M., et al., Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae Applied Microbiology and Biotechnology, 1996. 44(5): p. 610-619.
21. Houghton-Larsen, J. and P.A. Pedersen, Cloning and characterisation of a glucoamylase gene (GlaM) from the dimorphic zygomycete Mucor circinelloides. Appl Microbiol Biotechnol, 2003. 62(2-3): p. 210-7.
22. Chou, W.I., et al., The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J, 2006. 396(3): p. 469-77.
23. Coutinho, P.M. and B. Henrissat, The modular structure of cellulases and other carbohydrate-active enzymes: an intergrated database approach. In "Genetics, Biochemistry and Ecology of Cellulose Degradation". , ed. K. Ohmiya, et al. 1999, Tokyo: Uni Publishers Co. 15-23.
24. Hall, J., et al., The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem J, 1995. 309 ( Pt 3): p. 749-56.
25. Khakzad, M.R., et al., Is serum or sputum eosinophil cationic protein level adequate for diagnosis of mild asthma? Iran J Allergy Asthma Immunol, 2009. 8(3): p. 155-60.
26. Thorleifsson, G., et al., Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nature genetics, 2009. 41(8): p. 926-30.
27. Tung, J.Y., et al., Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem. J., 2008. 416(1): p. 27-36.
28. Boraston, A.B., et al., Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J., 2004. 382(Pt 3): p. 769-81.
29. Simpson, P.J., et al., The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. The Journal of biological chemistry, 2000. 275(52): p. 41137-42.
30. Guan, L., Y. Hu, and H.R. Kaback, Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry, 2003. 42(6): p. 1377-82.
31. Ponyi, T., et al., Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry, 2000. 39(5): p. 985-91.
32. Pell, G., et al., Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry, 2003. 42(31): p. 9316-23.
33. Xie, H., et al., Role of hydrogen bonding in the interaction between a xylan binding module and xylan. Biochemistry, 2001. 40(19): p. 5700-7.
34. Rodriguez-Sanoja, R., N. Oviedo, and S. Sanchez, Microbial starch-binding domain. Curr Opin Microbiol, 2005. 8(3): p. 260-7.
35. Liu, Y.N., et al., Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem. J., 2007. 403(1): p. 21-30.
36. Tellinghuisen, J., Optimizing experimental parameters in isothermal titration calorimetry: variable volume procedures. J Phys Chem B, 2007. 111(39): p. 11531-7.
37. Tellinghuisen, J., A study of statistical error in isothermal titration calorimetry. Anal Biochem, 2003. 321(1): p. 79-88.
38. Tellinghuisen, D.J. and E.J. Nowak, The inability to ignore auditory distractors as a function of visual task perceptual load. Percept Psychophys, 2003. 65(5): p. 817-28.
39. Dews, I., et al., A comparison of single doses of lisinopril and enalapril in hypertension. J Hum Hypertens, 1989. 3 Suppl 1: p. 35-9.
40. Pierce, M.M., C.S. Raman, and B.T. Nall, Isothermal titration calorimetry of protein-protein interactions. Methods, 1999. 19(2): p. 213-21.
41. Lee, Y.C., Fluorescence spectrometry in studies of carbohydrate-protein interactions. J Biochem, 1997. 121(5): p. 818-25.
42. Chou, W.Y., et al., Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate-binding modules. Bioinformatics, 2010. 26(8): p. 1022-8.
43. Fischer, G., et al., Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature, 1989. 337(6206): p. 476-8.
44. Eaton, W.A., et al., Fast kinetics and mechanisms in protein folding. Annu Rev Biophys Biomol Struct, 2000. 29: p. 327-59.
45. Hiromi, K., et al., Kinetic studies on gluc-amylase. 3. The influence of pH on the rates of hydrolysis of maltose and panose. J Biochem, 1966. 59(5): p. 469-75.
46. Savel'ev, A.N. and L.M. Firsov, [Effect of modifications of a series of amino acid radicals on the enzymatic activity of glucoamylase from Aspergillus awamori]. Biokhimiia, 1983. 48(8): p. 1311-8.
47. Ji, Q., et al., Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants. Plant Biotechnol J, 2004. 2(3): p. 251-60.
48. Sigurskjold, B.W., et al., Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space. Biochemistry, 1998. 37(29): p. 10446-52.
49. Sugimoto, H., et al., Thermodynamic effects of disulfide bond on thermal unfolding of the starch-binding domain of Aspergillus niger glucoamylase. Biosci Biotechnol Biochem, 2007. 71(6): p. 1535-41.
50. Christiansen, C., et al., The carbohydrate-binding module family 20--diversity, structure, and function. The FEBS journal, 2009. 276(18): p. 5006-29.
51. Boraston, A.B., et al., A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem, 2006. 281(1): p. 587-98.
52. van Bueren, A.L., et al., Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors. Nat Struct Mol Biol, 2007. 14(1): p. 76-84.