簡易檢索 / 詳目顯示

研究生: 古莞霖
Ku, Kuan-Lin
論文名稱: 開發聚酸酐共聚物及表面改質之陶瓷複合材料於骨組織替代物之應用
Development of Polyanhydride Copolymers/ Grafted Nanoceramic Composite for Bone Substitutes
指導教授: 朱一民
Chu, I-Ming
口試委員: 林峯輝
Lin, Feng-Huei
黃清安
Huang, Ching-An
蔡德豪
Tsai, De-Hao
賴伯亮
Lai, Po-Liang
姚少凌
Yao, Chao-Ling
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 88
中文關鍵詞: 聚酸酐表面改質之氫氧基磷灰石奈米複合材料顆粒分散性體外降解
外文關鍵詞: polyanhydride, grafted hydroxyapatite, nanocomposite, particles dispersion, in vitro degradation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Poly (1,6-bis-(p-carboxyphenoxy hexane)-co-(sebacic anhydride)) (PANH)是一具有良好生物相容性的聚酸酐共聚物。聚酸酐共聚物以表面裂解的方式降解,降解後的產物不具有毒性且表面裂解的材料在降解過程中較可維持機械性質。氫氧基磷灰石 (hydroxyapatite, HAP)是一著名的生物陶瓷,因為其良好的骨傳導性,目前已被應用在骨組織修復上。然而,奈米尺寸HAP顆粒於有機溶劑中的分散性較差,因此HAP顆粒混合入高分子基質後易產生聚集,進而成為複合材料中的主要缺陷。在本研究中,將HAP以poly(ɛ-caprolactone) (PCL)進行表面改質的HAP顆粒 (PCL-gHAP) 改善顆粒表面貼覆性及其在PANH基質中的分散性。利用掃描式電子顯微鏡的背散射電子探測器 (scanning electron microscopy-backscattered electron,SEM-BSE)及結合聚焦電子束 (focused ion beam,FIB)和穿透式電子顯微鏡的技術 (transmission electron microscopy,TEM)提供一個非常有效的方法來觀察HAP顆粒在PANH基質中的分布情形。本研究結果顯示,以PCL修飾HAP表面可有效提升陶瓷顆粒在高分子基材中的分散性且改質後的顆粒會影響複合材料在降解過程中的特性,如降解速率,機械性質,材料表面特性等。增加HAP的比例,可提升複合材料的抗壓強度且會加速材料的降解速度,而以混摻PCL-gHAP顆粒的複合材料較混摻HAP顆粒的複合材料在降解過程中有較佳的機械性質。大鼠頭蓋骨的初步修復結果顯示PCL-gHAP/PANH較HAP/PANH有優越的修復效果。根據本研究結果,PCL-gHAP/PANH的複合材料具其淺力可在未來應用於骨組織替代物。


    Poly(1,6-bis-(p-carboxyphenoxy hexane)-co-(sebacic anhydride)) (PANH), is a polyanhydride copolymer which has good biocompatibility, and degrades to non-toxic products with a predictable rate of degradation. Nano-sized hydroxyapatite (nHAP) is a well-known biomaterial which has been applied in bone regeneration due to its osteoconductivity. However, nano-sized HAP has poor colloidal stability which leads to agglomeration when incorporated into polymeric composites. In this work we describe the surface grafting of poly(ɛ-caprolactone) to HAP (PCL-gHAP) to improve the interfacial adhesion and dispersion of HAP particles in a PANH matrix to form a composite material.
    The use of scanning electron microscopy-backscattered electron (SEM-BSE) detector and the combination of focused ion beam (FIB)/ transmission electron microscopy (TEM) provided a powerful approach for observing the dispersion of HAP particles in the polymer matrix. We show that surface modification of gHAP with PCL improved the homogeneity of the dispersion of PCL-gHAP particles in the composites and affected the composite morphology during hydrolytic degradation. Composites with high HAP content displayed high compressive strength and a fast rate of degradation. The PCL-gHAP/PANH composites showed superior maintenance of mechanical properties compared with nHAP/PANH composites during degradation. A preliminary in vivo study on rat calvaria repair, demonstrated the superior performance of PCL-gHAP/PANH composites. These results suggest that the newly developed PCL-gHAP/PANH composite materials may be a potential substrate for bone tissue engineering.

    ABSTRATE I 中文摘要 II ACKNOWLEDGEMENTS III CONTENT V TABLE CONTENT XI 1. INTRODUCTION 1 1.1 Research background 1 1.2 Objectives and motives 3 1.3 References 4 2. LITERATURE REVIEW 9 2.1 Biodegradable materials 9 2.1.1 Poly(methyl methacrylate) (PMMA) based cements 9 2.1.2 Polyester materials 10 2.2 Polyanhydrides polymers 12 2.2.1 Aliphatic polyanhydrides 12 2.2.2 Aromatic polyanhydrides 13 2.2.3 Polyanhydrides copolymers 14 2.3 Bioactive ceramics 16 2.4 Polymer and ceramic nanocomposites 19 2.5 Characterization methods 20 2.5.1 Backscattered electrons (BSE) detector 20 2.5.2 Focused ion beam (FIB)/TEM technique 21 2.6 References 23 3. Materials and Methods 29 3.1 Preparation of polyanhydride copolymer 29 3.1.1 Synthesis of 1,6-bis-(p-carboxyphenoxy)hexane monomers (CPHM) 29 3.1.2 Synthesis of polyanhydride prepolymers 29 3.1.3 Synthesis of poly(1,6-bis-(p-carboxyphenoxy)hexane-co-sebacic anhydride) copolymer (PANH) 31 3.2 Analysis and polymers characterization 33 3.2.1 Nuclear magnetic resonance spectroscopy, NMR 33 3.2.2 Gel permeation chromatography, GPC 33 3.2.3 Differential scanning calorimetry, DSC 33 3.3 Surface modification of nanocrystalline hydroxyapatite with ɛ-caprolactone 34 3.4 Characterizations of particle surface modification 35 3.4.1 Fourier transform infrared spectroscopy, ATR-FTIR 35 3.4.2 Thermogravimetric Analysis, TGA 35 3.4.3 Transmission electron microscopy, TEM 35 3.4.4 X-ray photoelectron spectroscopy, XPS 35 3.5 Tablet scaffold fabrication 36 3.6 Characterization of particles dispersion in polymer matrix 38 3.6.1 Focused ion beam/transmission electron microscopy, FIB/TEM 38 3.6.2 Focused Ion beam/ backscattered electron images, FIB/BSE 38 3.7 In vitro degradation study 39 3.7.1 pH value 39 3.7.2 Mass loss 39 3.7.3 Mechanical properties 40 3.7.4 Scanning electron microscope, SEM 40 3.8 In vivo study 41 3.9 References 42 4. Results and Discussions 43 4.1 Improvement of 1,6-bis(p-carboxyphenoxy)hexane monomer (CPHM) purity 43 4.2 Characterizations of polyanhydrides 50 4.2.1 Characterizations of polyanhydride prepolymer 50 4.2.2 Characterizations of PANH 52 4.2.3 Stability of PANH after the process of hot press 53 4.3 Characterizations of the surface modified HAP 55 4.3.1 Compatibility of PCL and PANH 55 4.3.2 Grafting efficiency of PCL by TGA 56 4.3.3 Surface characterization by ATR-FTIR 57 4.3.4 The morphology of surface-modified HAP observed by TEM 58 4.3.5 Surface characterization by XPS 59 4.3.6 Grafting density of PCL-gHAP 61 4.3.7 Colloidal stability of HAP (PCL-gHAP) particles in dichloromethane 62 4.4 Characterizations of particles in PANH matrix 63 4.4.1 Presence of HAP by ATR-FTIR 63 4.4.2 Proportion of particles in PANH matrix 64 4.4.3 Dispersion of particles in PANH matrix –as evaluated by various imaging techniques 65 4.4.3.1 Images by SEM-BSE 65 4.4.3.2 Images by FIB/TEM 67 4.4.3.3 Images by FIB/SEM-BSE 68 4.5 Study of in vitro degradation 70 4.5.1 pH value and mass loss 70 4.5.2 Degradation of PANH with time 71 4.5.3 The changes of morphologies 72 4.5.3.1 The change of appearances 72 4.5.3.2 The change of surface 73 4.5.3.3 The change of particle proportions in composite tablets 75 4.5.3.4 The change of cross-section 76 4.5.4 Mechanical properties 77 4.6 In vivo study 80 4.7 References 82 5. CONCLUSIONS 85 6. FUTURE PLAN 86 APPENDIX 87

    Chapter 1
    [1] Lieshout EMMV. Bone substitute materials in trauma and orthopedic surgery - properties and use in clinic. In: A. Tiwari, M. Ramalingam, H. Kobayashi, Turner APF, editors. Biomedical Materials and Diagnostic Devices. US: Wiley; 2012. p. 157-89.
    [2] Miguez-Pacheco V, Misra SK, Boccaccini AR. Biodegradable and bioactive polymer/inorganic phase nanocomposites for bone tissue engineering (BTE). In: Boccaccini AR, Ma AR, editors. Tissue Engineering Using Ceramics and Polymers. 2 ed. Burlington: Elsevier Science; 2014. p. 115-50.
    [3] Guarino V, Taddei P, Foggia MD, Fagnano C, Ciapetti G, Ambrosio L. The influence of hydroxyapatite particles on in vitro degradation behavior of poly epsilon-caprolactone-based composite scaffolds. Tissue engineering Part A. 2009;15(11):3655-68.
    [4] Lai PL, Hong DW, Liu TH, Lai ZT, Cheng MH, Chen LH, et al. Validity of poly(1, 6-bis-(p-carboxyphenoxy hexane)-co-(sebacic anhydride)) copolymer in biomedical application. J Appl Polym Sci. 2013;128(6):3687-95.
    [5] Seal BL, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep. 2001;34(4-5):147-230.
    [6] Sarasam A, Madihally SV. Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials. 2005;26(27):5500-8.
    [7] Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817-27.
    [8] Attawia MA, Uhrich KE, Botchwey E, Fan M, Langer R, Laurencin CT. Cytotoxicity testing of poly(anhydride-co-imides) for orthopedic applications. Journal of Biomedical Materials Research. 1995;29(10):1233-40.
    [9] Snyder SS, Anastasiou TJ, Uhrich KE. In Vitro Degradation of an Aromatic Polyanhydride with Enhanced Thermal Properties. Polym Degrad Stab. 2015;115:70-6.
    [10] Domb AJ, Elmalak O, Shastri VR, Ta-Shma Z, Masters DM, Ringel I, et al. Polyanhydrides. In: Domb AJ, Kost J, Wiseman DM, editors. Handbook of biodegradable polymers. Singapore: Harwood Academic Publishers; 1997. p. 135-59.
    [11] LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clinical orthopaedics and related research. 2002;395:81-98.
    [12] Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25(19):4749-57.
    [13] Kim BS, Yang SS, Lee J. A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2014;102(5):943-51.
    [14] Kim BS, Kang HJ, Lee J. Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating. J Biomed Mater Res B Appl Biomater. 2013;101(7):1302-9.
    [15] Lee HJ, Choi HW, Kim KJ, Lee SC. Modification of Hydroxyapatite Nanosurfaces for Enhanced Colloidal Stability and Improved Interfacial Adhesion in Nanocomposites. Chem Mater. 2006;18(21):5111-8.
    [16] Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater. 2003;15(16):3198-201.
    [17] Wei J, Liu A, Chen L, Zhang P, Chen X, Jing X. The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of gamma-benzyl-l-glutamate N-carboxyanhydride. Macromol Biosci. 2009;9(7):631-8.
    [18] Deng C, Weng J, Duan K, Yao N, Yang XB, Zhou SB, et al. Preparation and mechanical property of poly(epsilon-caprolactone)-matrix composites containing nano-apatite fillers modified by silane coupling agents. J Mater Sci Mater Med. 2010;21(12):3059-64.
    [19] Hunziker EB. Osteoinductivization of dental implants and bone-defect-filling materials. In: Mallick K, editor. Bone substitute biomaterials. Cambridge, UK: Woodhead Publishing; 2014. p. 72-9.
    [20] Choi HW, Lee HJ, Kim KJ, Kim HM, Lee SC. Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups. J Colloid Interface Sci. 2006;304(1):277-81.
    [21] Hong ZK, Qiu XY, Sun JR, Deng MX, Chen XS, Jing XB. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer. 2004;45(19):6699-706.
    [22] Hong Z, Zhang P, He C, Qiu X, Liu A, Chen L, et al. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials. 2005;26(32):6296-304.
    [23] Qiu X, Hong Z, Hu J, Chen L, Chen X, Jing X. Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide. Biomacromolecules. 2005;6(3):1193-9.
    [24] Rai B, Grøndahl L, Trau M. Combining chemistry and biology to create colloidally stable bionanohydroxyapatite particles: toward load-bearing bone applications. Langmuir. 2008;24(15):7744-9.
    [25] Noohom W, Jack KS, Martin D, Trau M. Understanding the roles of nanoparticle dispersion and polymer crystallinity in controlling the mechanical properties of HA/PHBV nanocomposites. Biomed Mater. 2009;4(1):015003/1-13.
    [26] Goonasekera CS, Jack KS, Cooper-White JJ, Grøndahl L. Dispersion of hydroxyapatite nanoparticles in solution and in polycaprolactone composite scaffolds. J Mater Chem B. 2016;4(3):409-21.
    [27] Goonasekera CS, Jack KS, Bhakta G, Rai B, Luong-Van E, Nurcombe V, et al. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2. Biointerphases. 2015;10(4):04A308/1-12.
    [28] Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J Biomed Mater Res A. 2010;94(1):241-51.
    [29] Mareri P, Bastide S, Binda N, Crespy A. Mechanical behaviour of polypropylene composites containing fine mineral filler: Effect of filler surface treatment. Compos Sci Technol. 1998;58(5):747-52.

    Chapter 2
    [1] Puska M, Aho AJ, Vallittu P. Polymer Composites for Bone Reconstruction. In: Těšinova P, editor. Advances in Composite Materials - Analysis of Natural and Man-Made Materials: InTech; 2011.
    [2] Lieshout EMMV. Bone Substitute Materials in Trauma and Orthopedic Surgery - Properties and Use in Clinic. In: Ashutosh Tiwari MR, Hisatoshi Kobayashi, Anthony P.F. Turner, editor. Biomedical Materials and Diagnostic Devices: Wiley; 2012.
    [3] Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010;132:15-30.
    [4] Arora M, Chan EK, Gupta S, Diwan AD. Polymethylmethacrylate bone cements and additives: A review of the literature. World J Orthop. 2013;4(2):67-74.
    [5] Lai PL, Chen LH, Chen WJ, Chu IM. Chemical and physical properties of bone cement for vertebroplasty. Biomed J. 2013;36(4):162-7.
    [6] Webb JC, Spencer RF. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br. 2007;89(7):851-7.
    [7] Miguez-Pacheco V, Misra S, Boccaccini A. Biodegradable and bioactive polymer/inorganic phase nanocomposites for bone tissue engineering (BTE). In: Aldo R Boccaccini JG, editor. Tissue Engineering Using Ceramics and Polymers. England: Woodhead Publishing Limited; 2007.
    [8] Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym Degrad Stab. 2010;95(11):2126-46.
    [9] Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413-31.
    [10] Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 2011;3(3):1377-97.
    [11] Leja K, Lewandowicz G. Polymer biodegradation and biodegradable polymers - A review. Pol J Environ Stud. 2010;19(2):255-66.
    [12] Sarasam A, Madihally SV. Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials. 2005;26(27):5500-8.
    [13] Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817-27.
    [14] Göpferich A, Tessmar J. Polyanhydride degradation and erosion. Adv Drug Deliv Rev. 2002;54(7):911-31.
    [15] Kumar N, Langer RS, Domb AJ. Polyanhydrides: an overview. Adv Drug Deliv Rev. 2002;54(7):889-910.
    [16] Torres MP, Vogel BM, Narasimhan B, Mallapragada SK. Synthesis and characterization of novel polyanhydrides with tailored erosion mechanisms. J Biomed Mater Res A. 2006;76(1):102-10.
    [17] Lai PL, Hong DW, Ku KL, Lai ZT, Chu IM. Novel thermosensitive hydrogels based on methoxy polyethylene glycol-co-poly(lactic acid-co-aromatic anhydride) for cefazolin delivery. Nanomedicine. 2014;10(3):553-60.
    [18] Domb AJ, Nudelman R. In vivo and in vitro elimination of aliphatic polyanhydrides. Biomaterials. 1995;16(4):319-23.
    [19] Mathiowitz E, Ron E, Mathiowitz G, Amato C, Langer R. Morphological characterization of bioerodible polymers. 1. Crystallinity of polyanhydride copolymers. Macromolecules. 1990;23(13):7.
    [20] Göpferich A., Langer R. The influence of microstructure and monomer properties on the erosion mechanism of a class of polyanhydrides. J Polym Sci, Part A: Polym Chem. 1993;31(10):14.
    [21] Shakesheff K. M., Davies M. C., Roberts C. J., Tendler S. J. B., Shard A. G., A. D. In situ Atomic Force Microscopy Imaging of Polymer Degradation in an Aqueous Environment. Langmuir. 1994;10(12):3.
    [22] Tamada J, Langer R. The development of polyanhydrides for drug delivery applications. J Biomater Sci Polym Ed. 1992;3(4):315-53.
    [23] Domb AJ, Gallardo CF, Langer R. Poly(anhydrides). 3. Poly(anhydrides) based on aliphatic-aromatic diacids. Macromolecules. 1989;22(8):3200-4.
    [24] Lai PL, Hong DW, Liu TH, Lai ZT, Cheng MH, Chen LH, et al. Validity of poly(1, 6-bis-(p-carboxyphenoxy hexane)-co-(sebacic anhydride)) copolymer in biomedical application. J Appl Polym Sci. 2013;128(6):3687-95.
    [25] LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clinical orthopaedics and related research. 2002(395):81-98.
    [26] Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25(19):4749-57.
    [27] Kim BS, Yang SS, Lee J. A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2014;102(5):943-51.
    [28] Kim BS, Kang HJ, Lee J. Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating. J Biomed Mater Res B Appl Biomater. 2013;101(7):1302-9.
    [29] Lee HJ, Choi HW, Kim KJ, Lee SC. Modification of Hydroxyapatite Nanosurfaces for Enhanced Colloidal Stability and Improved Interfacial Adhesion in Nanocomposites. Chem Mater. 2006;18(21):5111-8.
    [30] Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS. Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites. Chemistry of Materials. 2003;15(16):3198-201.
    [31] Wei J, Liu A, Chen L, Zhang P, Chen X, Jing X. The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of gamma-benzyl-l-glutamate N-carboxyanhydride. Macromol Biosci. 2009;9(7):631-8.
    [32] Deng C, Weng J, Duan K, Yao N, Yang XB, Zhou SB, et al. Preparation and mechanical property of poly(epsilon-caprolactone)-matrix composites containing nano-apatite fillers modified by silane coupling agents. J Mater Sci Mater Med. 2010;21(12):3059-64.
    [33] Mallick K. Bone substitute biomaterials. Cambridge, UK: Woodhead Publishing; 2014.
    [34] Hong ZK, Qiu XY, Sun JR, Deng MX, Chen XS, Jing XB. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer. 2004;45(19):6699-706.
    [35] Hong Z, Zhang P, He C, Qiu X, Liu A, Chen L, et al. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials. 2005;26(32):6296-304.
    [36] Qiu X, Hong Z, Hu J, Chen L, Chen X, Jing X. Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide. Biomacromolecules. 2005;6(3):1193-9.
    [37] Choi HW, Lee HJ, Kim KJ, Kim HM, Lee SC. Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups. J Colloid Interface Sci. 2006;304(1):277-81.
    [38] Liu Q, Wijn JR de, Groot K de, Blitterswijk CA van. Surface modification of nano-apatite by grafting organic polymer. Biomaterials. 1998;19(11):1067-72.
    [39] Qiu XY, Chen L, Hu JL, Sun JG, Hong ZK, Liu AX, et al. Surface-modified hydroxyapatite linked by L-lactic acid oligomer in the absence of catalyst. J Polym Sci, Part A: Polym Chem. 2005;43(21):9.
    [40] Cui Y, Liu Y, Cui Y, Jing X, Zhang P, Chen X. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Acta Biomater. 2009;5(7):2680-92.
    [41] Dolatshahi-Pirouz A, Jensen T, Foss M, Chevallier J, Besenbacher F. Enhanced surface activation of fibronectin upon adsorption on hydroxyapatite. Langmuir. 2009;25(5):2971-8.
    [42] Ozhukil Kollath V, Put S, Mullens S, Vanhulsel A, Luyten J, Traina K, et al. Atmospheric pressure plasma as an activation step for improving protein adsorption on hydroxyapatite powder. Plasma Process Polym. 2015;12(6):594-601.
    [43] Rai B, Grøndahl L, Trau M. Combining chemistry and biology to create colloidally stable bionanohydroxyapatite particles: toward load-bearing bone applications. Langmuir. 2008;24(15):7744-9.
    [44] Noohom W, Jack KS, Martin D, Trau M. Understanding the roles of nanoparticle dispersion and polymer crystallinity in controlling the mechanical properties of HA/PHBV nanocomposites. Biomed Mater. 2009;4(1):015003/1-13.
    [45] Wang X, Song G, Lou T. Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite. Med Eng Phys. 2010;32(4):391-7.
    [46] Boccaccini AR, Ma PX. Tissue engineering using ceramics and polymers. Burlington: Elsevier Science; 2014.
    [47] Mareri P, Bastide S, Binda N, Crespy A. Mechanical behaviour of polypropylene composites containing fine mineral filler: Effect of filler surface treatment. Compos Sci Technol. 1998;58(5):747-52.
    [48] Goldstein JI. Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. New York: Plenum Press; 1992.
    [49] Denk W, Horstmann H. Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure. PLoS Biol. 2004;2(11):e329.
    [50] Wirth R. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol. 2009;261:13.
    [51] https://wiki2.org/en/Focused_ion_beam#Principle.

    Chapter 3
    [1] Lai PL, Hong DW, Liu TH, Lai ZT, Cheng MH, Chen LH, et al. Validity of poly(1, 6-bis-(p-carboxyphenoxy hexane)-co-(sebacic anhydride)) copolymer in biomedical application. J Appl Polym Sci. 2013;128(6):3687-95.
    [2] Hill JW. Studies on polymerization and ring formation XVII Friedel-Crafts syntheses with the polyanhydrides of the dibasic acids. J Am Chem Soc. 1932;54:4105-6.
    [3] Lu HB, Campbell CT, Graham DJ, Ratner BD. Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal Chem. 2000;72(13):2886-94.

    Chapter 4
    [1] Lai PL, Hong DW, Liu TH, Lai ZT, Cheng MH, Chen LH, et al. Validity of poly(1, 6-bis-(p-carboxyphenoxy hexane)-co-(sebacic anhydride)) copolymer in biomedical application. J Appl Polym Sci. 2013;128(6):3687-95.
    [2] Conix A. Aromatic Polyanhydrides, a New Class of High Melting Fiber-Forming Polymers. J Polym Sci. 1958;29(120):343-53.
    [3] Göpferich A, Tessmar J. Polyanhydride degradation and erosion. Adv Drug Deliv Rev. 2002;54(7):911-31.
    [4] Jaszcz K, Łukaszczyk J. Synthesis, characterization and in vitro degradation of poly(ester-anhydride)s based on succinic acid and 1,6-bis- p-carboxyphenoxyhexane. Reactive and Functional Polymers. 2010;70(9):630-8.
    [5] Vogel BM, Cabral JT, Eidelman N, Narasimhan B, Mallapragada SK. Parallel synthesis and high throughput dissolution testing of biodegradable polyanhydride copolymers. Journal of combinatorial chemistry. 2005;7(6):921-8.
    [6] Wu C-S. A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer. 2005;46(1):147-55.
    [7] Seal BL, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports. 2001;34(4-5):84.
    [8] Boccaccini AR, Ma PX. Tissue engineering using ceramics and polymers. Burlington: Elsevier Science; 2014.
    [9] Kim M, Schmitt S, Choi J, Krutty J, Gopalan P. From Self-Assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes. Polymers. 2015;7(7):1346.
    [10] Speranza V, Sorrentino A, De Santis F, Pantani R. Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies. TheScientificWorldJournal. 2014;2014:1-9.
    [11] Hong ZK, Qiu XY, Sun JR, Deng MX, Chen XS, Jing XB. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer. 2004;45(19):6699-706.
    [12] NA ZHANG S-RG. Synthesis and Micellization of Amphiphilic Poly(sebacic anhydride)–Poly(ethylene glycol)–Poly(sebacic anhydride) Block Copolymers. Journal of Polymer Science: Part A: Polymer Chemistry. 2006;44:8.
    [13] Kumar N, Langer RS, Domb AJ. Polyanhydrides: an overview. Adv Drug Deliv Rev. 2002;54(7):889-910.
    [14] Wirth R. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chemical Geology. 2009;261:13.
    [15] Guarino V, Taddei P, Di Foggia M, Fagnano C, Ciapetti G, Ambrosio L. The influence of hydroxyapatite particles on in vitro degradation behavior of poly epsilon-caprolactone-based composite scaffolds. Tissue engineering Part A. 2009;15(11):3655-68.
    [16] Rosen HB, Chang J, Wnek GE, Linhardt RJ, Langer R. Bioerodible polyanhydrides for controlled drug delivery. Biomaterials. 1983;4(2):131-3.
    [17] Domb AJ, Gallardo CF, Langer R. Poly(anhydrides). 3. Poly(anhydrides) based on aliphatic-aromatic diacids. Macromolecules. 1989;22(8):3200-4.
    [18] Akbari H, D'Emanuele A, Attwood D. Effect of geometry on the erosion characteristics of polyanhydride matrices. Intern J Pharm. 1998;160(1):83-9.
    [19] Mareri P, Bastide S, Binda N, Crespy A. Mechanical behaviour of polypropylene composites containing fine mineral filler: Effect of filler surface treatment. Compos Sci Technol. 1998;58(5):747-52.
    [20] Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent. 2002;87(6):642-9.
    [21] Vörös G, Pukánszky B. Effect of a soft interlayer with changing properties on the stress distribution around inclusions and yielding of composites. Composites Part A. 2001;32(3):343-52. 

    QR CODE