簡易檢索 / 詳目顯示

研究生: 賴修平
Lai, Hsiu Ping
論文名稱: 設計並合成分子轉子螢光蛋白質探針
Design and Synthesis of Protein Probe Based on the Fluorescent Molecular Rotor
指導教授: 陳貴通
Tan Kui-Thong
口試委員: 林伯樵
Lin, Po-Chiao
林俊成
Lin, Chun-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
論文頁數: 113
中文關鍵詞: 螢光探針
外文關鍵詞: probe
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質在細胞中的位置、含量及交互作用對生物體有著重要的資訊,與大部分生物進程如生長、代謝、繁殖等息息相關,因此蛋白質偵測極其重要,然而傳統偵測方法需經過一系列複雜的處理步驟,費時且不方便,具有快速偵測、具專一性、高靈敏度、優化簡易、高信號雜訊比等優點的小分子型蛋白質螢光探針便在近年來越來越受到重視,雖然目前有許多小分子型螢光探針證實可用來偵測特定蛋白質,但其多為酶活性型探針,亦即利用蛋白質本身之催化活性,進而達到其偵測目的,但若是針對非酶活性蛋白質進行偵測將受種種限制,由於非酶活性蛋白質在人體中亦佔有重要的地位,開發非酶活性蛋白質探針相當重要。
    在此我們以環境敏感螢光分子與對蛋白質之親和性配體結合,並形成一對目標蛋白質具專一性偵測之螢光探針,利用蛋白質結合後其巨大立體障礙限制分子本身旋轉的淬熄機制,使環境敏感螢光分子產生劇烈的螢光變化。我們成功建立一套TO型螢光探針模型,並成功應用於人類碳酸酐酶(hCAII)、凝血酶(thrombin)及抗生物素蛋白(avidin)之專一性檢測,其螢光增益最高可達90倍,並延伸應用於細胞膜上hCAII表達之成像及數種磺胺藥物偵測。


    Protein location and interaction in the cells are important, which involve many biological processes, such as growth, metabolism and reproduction. Traditional protein detection methods have to undergo operation complex steps, therefore small molecule fluorescent turn-on probes are getting more attention due to their high sensitive, simple operation, and high specific detection with high signal-to-background ratios. Until now, the design of fluorescence probes for non-enzymatic proteins remains a challenging task.
    Here we introduce a general design to construct florescence probes by using conjugates of a fluorescent molecular rotor and protein specific ligands, for the selective fluorescence turn-on detection of proteins through non-enzymatic process.
    When the probe bind to the target proten, because of stupendous steric effect caused by the large protein volume, the fluorescence quench mechanism will be restricted, and highly fluorescence can be observed. We successfully established a TO type model for specific detection of hCAII, thrombin and avidin with fluorescent turn-on ratios up to 90-fold. We also demonstrated that one of the fluorescent probes can be employed to visualize carbonic anhydrase expressed on the cell surface, as well as sulfa drugs detection.

    摘要 i Abstract ii 謝誌 iii 著作列表 iV 第一章 緒論 1 §1-1 蛋白質(Protein) 1 §1-2 傳統蛋白質偵測方法 5 §1-3 環境敏感螢光分子 8 §1-3.1極性敏感分子 8 §1-3.2分子轉子螢光分子(Molecular rotor) 10 §1-4 實驗動機及目的 13 第二章 文獻回顧 14 §2-1 近代選擇性蛋白探針方法 14 §2-1.1 小分子型螢光探針(small molecule fluorescent probes) 14 §2-1.2 螢光蛋白式蛋白質探針(fluorescent protein-based probes) 17 §2-1.3自組裝式蛋白質螢光探針(self-assembling fluorescent probes) 19 §2-1.4金奈米粒子式蛋白質(gold nanoparticle-based protein probes) 22 §2-1.5 量子點式蛋白質探針(quantum dot-based protein probes) 24 §2-1.6 信標式螢光蛋白質探針(beacons-based fluorescent protein probes) 26 §2-1.7螢光高分子型探針(fluorescent-polymer-based probes) 28 §2-1.8分子轉子型探針(molecular rotor fluorescent probes) 31 §2-2 設計之限制 33 第三章 蛋白質探針設計構想 35 第四章 實驗結果與討論 37 §4-1 以人類碳酸酐酶II建立TO探針模型 38 §4-2 模型延伸 47 §4-3 細胞影像應用 50 §4-4 一級磺胺藥物檢測 56 第五章 結論 60 第六章 實驗部分 61 §6-1 一般實驗方法 61 §6-2 有機合成及光譜資料 61 參考文獻 79 附錄 87

    1. Warner, J. R.; Knopf, P. M.; Rich, A. Proc. Natl. Acad. Sci. U. S. A. 1963, 49,
    122-129.
    2. Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 205-211.
    3. Terai, T.; Nagano, T. Pflug A. Rch. Eur. J. Phy. 2013, 465, 347-359.
    4. Gao, W.; Xing, B.; Tsien, R. Y.; Rao, J. J. Am. Chem. Soc. 2003, 125, 11146–11147.
    5. Krücke, W.; Beck, E.; Vitzthum, H. G. J. Neurol. 1973, 206, 1-24
    6. (a)Aarsland, D.; Hutchinson, M.; Larsen, J. P. Int. J. Geriatr. Psychiatry.
    2003, 18, 937-941
    (b) Maelicke, A.; Samochocki, M.; Jostock, R.; Fehrenbacher, A.; Ludwig, J.;
    Albuquerque, E. X.; Zerlin, M. Biol. Psychiatry. 2001, 49, 279-288
    7. Aćimović, S. S.; Ortega, M. A.; Sanz, V.; Berthelot, J.; Garcia-Cordero, J. L.;
    Renger, J.; Sebastian, J.; Maerkl, S. J.; Kreuzer, M. P.; Quidant, R. Nano Lett.
    2014, 14, 2636-2641.
    8. Okutucu, B.; Dınçer, A.; Habib, Ö.; Zıhnıoglu, F. J. Biochem. Biophys. Methods.
    2007, 70, 709-711.
    9. Piro, B.; Reisberg, S.; Anquetin, G.; Duc, H. T.; Pham, M. C. Biosensors 2013, 3, 58-76.
    10. Zachariasse, K. A.; Grobys, M.; Von der Haar, T.; Hebecker, A.; Il'ichev, Y. V.;
    Morawski, O.; Kühnle, W. J. Photochem. Photobiol. A. 1997, 105, 373-383.
    11. Borowicz, P.; Herbich, J.; Kapturkiewicz, A.; Anulewicz-Ostrowska, R.; Nowacki,
    J.; Grampp, G. Phys. Chem. Chem. Phys. 2000, 2, 4275-4280.
    12. Parasassi, T.; Krasnowska, E. K.; Bagatolli, L.; Gratton, E. J. Fluoresc. 1998, 8, 365-373.
    13. Cohen, B. E.; McAnaney, T. B.; Park, E. S.; Jan, Y. N.; Boxer, S. G.; Jan, L.
    Science 2002, 296, 1700-1703.
    14. Zachariasse, K. A. Chem. Phys. Lett. 2000, 320, 8-13.
    15. Rulliere, C; Grabowski, Z.; Dobkowski J. Chem Phys Lett. 1987, 137, 408–413
    16. Gregoire, G.; Dimicoli, I.; Mons, M.; Dedonder-Lardeux, C.; Jouvet, C.;
    Martrenchard, S.; Solgadi, D. J. Phys. Chem. A. 1998, 102, 7896-7902.
    17. Rumble, C.; Rich, K.; He, G.; Maroncelli, M. C. J. Phys. Chem. A 2012, 116,
    10786-10792.
    18. Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891-4932.
    19. zent-Gyorgyi, C.; Schmidt, B. F.; Creeger, Y.; Fisher, G. W.; Zakel, K. L.; Adler,
    S.; Waggoner, A. Nat. Biotechnol. 2008, 26, 235-240.
    20. Zachariasse, K.A.; Grobys M; von der Haar T; Hebecker A.; Il’ichev, Y.V.; Jiang,
    Y.B.; Morawski O.; Knhnle W. J. Photochem. Photobiol. Chem. 1996, 102, 59–70.
    21. Haidekker, M. A.; Theodorakis, E. A. J. Biol. Eng, 2010, 4, 1-11.
    22. Deliconstantinos, G.; Villiotou, V.; Stavrides, J. C. Biochem. Pharmacol. 1995,
    49, 1589–1600
    23. Shinitzky, M. in Physiology of membrane fluidity, CRC Press, Boca Raton, 1984
    24. (a)Nadiv, O.; Shinitzky, M.; Manu, H.; Hecht, D.; Roberts, C. T.; Leroith, D.;
    Zick, Y. Biochem. J. 1994, 298, 443-450.
    (b) Osterode, W.; Holler, C.; Ulberth, F. Diabetic.Med. 1996, 13, 1044-1050.
    25. (a)Rye, H. S.; Quesada, M. A.; Peck, K.; Mathies, R. A.; GIazer, A. N. Nucleic
    Acids Res. 1991, 19, 327-333.
    (b) Narayanaswamy, N.; Kumar, M.; Das, S.; Sharma, R.; Samanta, P. K.; Pati, S.
    K.; Govindaraju, T. Sci Rep. 2014, 4, 1-10.
    26. Yang, Z.; He, Y.; Lee, J. H.; Park, N.; Suh, M.; Chae, W. S.; Kim, J. S. A. J. Am.
    Chem. Soc. 2013, 135, 9181-9185.
    27. Goh, W. L.; Lee, M. Y.; Joseph, T. L.; Quah, S. T.; Brown, C. J.; Verma, C.; Teo, Y. N. J. Am. Chem. Soc. 2014, 136, 6159-6162.
    28. Gao, W.; Xing, B.; Tsien, R. Y.; Rao, J. J. Am. Chem. Soc. 2003, 125 , 11146–11147.
    29. Gold, H. S.; Moellering Jr, R. C. New. Engl. J. Med. 1996, 335, 1445-1453.
    30. Jaffer, F. A.; Kim, D. E.; Quinti, L.; Tung, C. H.; Aikawa, E.; Pande, A. N.; Kohler, R. H.; Shi, G. P.; Libby, P., Weissleder, R. Circulation 2007, 115, 2292-2298.
    31. Nakamura, H.; Nakamura, K.; Yodoi, J. Annu. Rev.Immunol. 1997, 15, 351−369.
    32. Watson, W. H.; Pohl, J.; Montfort, W. R.; Stuchlik, O.; Reed, M. S.; Powis, G.;
    Jones, D. P. J. Biol. Chem. 2003, 278, 33408−33415.
    33. Haendeler, J.; Hoffman, J.; Tischler, V.; Berk, B. C.; Zeiher, A. M.; Dimmeler, S.
    Nat. Cell Biol. 2002, 4, 743−749.
    34. Tiitto, L.; Kaarteenaho-Wiik, R.; Sormunen, R.; Holmgren, A.; Paakko, P.; Soini,
    Y.; Kinnula, V. J. Pathol. 2003, 201, 363−370.
    35. Soini, Y.; Kahlos, K.; Napankangas, U.; Kaarteenaho-Wiik, R.; Saily, M.;
    Koistinen, P.; Paakko, P.; Holmgren, A.; Kinnula, V. L. Clin. Cancer. Res. 2001, 7, 1750−1757.
    36. Lu, J.; Holmgren, A. Antioxid. Redox Signaling. 2012, 17, 1738-1747.
    37. Zhang, L.; Duan, D.; Liu, Y.; Ge, C.; Cui, X.; Sun, J.; Fang, J. J. Am. Chem. Soc. 2014, 136, 226−233
    38. Lee, M. H.; Jeon, H. M.; Han, J. H.; Park, N.; Kang, C.; Sessler, J. L.; Kim, J. S.
    J. Am. Chem. Soc. 2014, 136, 8430-8437.
    39. Glazer, A. N.; Stryer, L. Trends. Biochem. Sci. 1984, 9, 423-427.
    40. Afar, B.; Merril, J., Clark E. A. J. Clin. Immunol. 1991, 11, 254-261.
    41. Prasher, D. C.; Eckenrode, V, K.; Ward W.W.; Prendergast, F. G.; Cormier, M. J.
    Gene. 1992, 111, 229-233.
    42. Ting, A. Y.; Kain, K. H.; Klemke, R. L.; Tsien, R. Y. Proc. Natl. Acad. Sci. U. S.A.
    2001, 98, 15003-15008.
    43. Hu, C. D.; Chinenov, Y.; Kerppola, T. K. Molecular cell 2002, 9, 789-798.
    44. Grinberg, A. V.; Hu, C. D.; Kerrpola, T. K. Mol. Cell. Biol. 2004, 24, 4294-4308.
    45. Lis, H.; Sharon, N. Chem. Rev. 1998, 98, 637-674.
    46. Sanji, T.; Shiraishi, K.; Tanaka, M. ACS Appl. Mater. Interfaces. 2009, 1,
    270-273.
    47. Mizusawa, K.; Takaoka, Y.; Hamachi, I. J. Am. Chem. Soc. 2012, 134, 13386−13395.
    48. Yoshii, T.; Mizusawa, K.; Takaoka, Y.; Hamachi, I. J. Am. Chem. Soc. 2014, 136, 16635-16642.
    49. Link, S.; El-sayed, M. A. J. Phys. Chem. C. 1999, 103, 8410-8426.
    50. W. Rettig, R. Lapouyade, in: J.R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Probe Design and Chemical Sensing, vol. 4, Plenum Press, New York, 1994, pp. 109–149.
    51. Medley, C. D., Smith, J. E., Tang, Z., Wu, Y., Bamrungsap, S.; Tan, W. Anal. Chem. 2008, 80, 1067-1072.
    52. Rumble, C.; Rich, K.; He, G.; Maroncelli, M. C. J. Phys. Chem. A 2012, 116,
    10786-10792.
    53. López-Duarte, I.; Vu, T. T.; Izquierdo, M. A.; Bull, J. A.; Kuimova, M. K. Chem.
    Commun. 2014, 50, 5282-5284.
    54. Nath, N.; Chilkoti, A. Anal. Chem. 2002, 74, 504-509.
    55. Biswas, P.; Cella, L. N.; Kang, S. H.; Mulchandani, A.; Yates, M. V.; Chen, W.
    Chem. Commun. 2011, 47, 5259-5261.
    56. Xu, C.; Xing, B.; Rao, J. Biochem. Biophys. Res. Commun. 2006, 344, 931-935.
    57. Goun, E. A.; Shinde, R.; Dehnert, K. W.; Adams-Bond, A.; Wender, P. A.; Contag,
    C. H.; Franc, B. L. Bioconjugate Chem. 2006, 17, 787-796
    58. Jiang, T.; Olson, E. S.; Nguyen, Q. T.; Roy, M.; Jennings, P. A.; Tsien, R. Y. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 17867-17872.
    59. Yang, C. J.; Cui, L.; Huang, J.;Yan, L.; Lin, X.; Wang, C., Zhang, W.Y.; Kang, H. Biosens. Bioelectron. 2011, 27, 119-124..
    60. Funovics, M.; Weissleder, R.; Tung, C. H. Anal. Bioanal. Chem. 2003, 377,
    956-963.
    61. Kumaraswamy, S.; Bergstedt, T.; Shi, X.; Rininsland, F.; Kushon, S.; Xia, W.;
    Whitten, D. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7511-7515.
    62. Song, X.; Wang, H. L.; Shi, J.; Park, J. W.; Swanson, B. I. Chem. Mater. 2002,
    14, 2342-2347.
    63. Dwight, S. J.; Gaylord, B. S.; Hong, J. W.; Bazan, G. C. J. Am. Chem. Soc. 2004,
    126, 16850-16859.
    64. Fechter, E. J.; Olenyuk, B.; Dervan, P. B. J. Am. Chem. Soc. 2005, 127, 16685-16691.
    65. Koide, Y.; Urano, Y.; Yatsushige, A.; Hanaoka, K.; Terai, T.; Nagano, T. J. Am. Chem. Soc. 2009, 131, 6058-6059
    66. Maren, T. H. Annu. Rev. Pharmacool. Toxicol. 1976, 16, 309-327.
    67. Fujita, T. J. Med. Chem. 1972, 15, 1049-1056.
    68. Sly, William S.; Hu, P. Y. Annu. Rev. Biochem. 1995, 64, 375-401.
    69. Türeci, Ö.; Sahin, U., Vollmar, E., Siemer, S., Göttert, E., Seitz, G.; Sly, W. S. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 7608-7613.
    70. Loncaster, J. A.; Harris, A. L.; Davidson, S. E.; Logue, J. P.; Hunter, R. D.; Wycoff, C. C.; West, C. M. Cancer Res. 2001, 61, 6394-6399.
    71. Sainlos, M.; Iskenderian, W. S.; Imperiali, B. J. Am. Chem. Soc. 2009, 131,
    6680-6682.
    72. Cohen, B. E.; Pralle, A.; Yao, X.; Swaminath, G.; Gandhi, C. S.; Jan, Y. N.;
    Jan, L. Y. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 965-970.
    73. Yang, Z.; He, Y.; Lee, J. H.; Park, N.; Suh, M.; Chae, W. S.; Kim, J. S. A. J. Am. Chem. Soc. 2013, 135, 9181-9185.
    74. Sahaf, B.; Soderberg, A.; Spyrou, G.; Barral, A. M.; Pekkari, K.;Holmgren, A.;
    Rosen, A. Exp. Cell Res. 1997, 236, 181−192.
    75. Iwaki, T.; Torigoe, C.; Noji, M.; Nakanishi, M.Biochemistry, 1993, 32, 7589-7592.
    76. Wu, Y. Y.; Yu, W. T.; Hou, T. C.; Liu, T. K.; Huang, C. L.; Chen, I. C.; Tan, K. T. Chem. Commun. 2014, 50, 11507-11510.
    77. Amdursky, N.; Erez, Y.; Huppert, D. Acc. Chem. Res. 2012, 45, 1548-1557.
    78. Shank, N. I.; Pham, H. H.; Waggoner, A. S.; Armitage, B. A. J. Am. Chem. Soc. 2012, 135, 242-251.
    79. Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M. Chem. Rev. 2008, 108, 946-1051.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE