研究生: |
潘恩帝 Pandidurai, Jayabalan |
---|---|
論文名稱: |
設計與合成苯甲醯吡啶和嘧啶衍生物之熱活化延遲螢光材料及其於效率有機發光二極體之應用 Design and Synthesis of Benzoyl-Pyridine-and-Pyrimidine- Based Thermally Activated Delayed Fluorescence Emitters and their Application in Efficient OLEDs |
指導教授: |
鄭建鴻
CHENG, CHIEN-HUNG |
口試委員: |
廖文峯
LIAW, WEN-FENG 周鶴修 Chou, Ho-Hsiu 許千樹 Hsu, Chain-Shu 洪文誼 Hung, Wen-Yi |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 190 |
中文關鍵詞: | 有機發光二極體 、熱活化延遲螢光 、外部量子效率 、發光量子效率 、光致發光 |
外文關鍵詞: | OLED, TADF, EQE, PLQY, PL |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文包含熱活化延遲螢光材料在有機發光二極體之應用,我們進行理論計算、分子設計與合成、光物理特性、元件製作及電激發光性質的討論;為了更好的分析與理解,這篇論文分成下列三個章節主題:
在章節一中,包含四個高效率天藍光熱活化延遲螢光摻雜體35DczBPym、35DTCzBPym、25DczBPym、25DTCzBPym的設計和合成;這些分子的結構皆由電子予體苯甲酰嘧啶(BPym)和電子供體咔唑組成;這些化合物的放光光色為天藍光至藍綠光(484-500 nm),並同時展現極小的∆EST (40-100 meV)和較高的發光量子效率(PLQY > 87%);經由延遲螢光生命期的量測證實這些化合物具備熱活化延遲螢光的特性;在元件表現上,藍綠光發光體25DTCzBPym和天藍光發光體35DTCzBPym的最大外部量子效率高達23.1 %、20.8 %,同時在亮度為1000 cdm-2仍擁有較小的效率滾降。
在第二章節中,我們發表了三個黃綠光至黃光之TADF摻雜發光體,分別為26DAcBPy、25DAcBPy、26DPXZBPy;在分子的設計上,拉電子基團為二苯甲酰吡啶,推電子基團分別為二甲基吖啶(Ac)和酚噁嗪(PXZ),而26DAcBPy、25DAcBPy、26DPXZBPy的延遲螢光生命期依序為2.3 μs、1.9 μs、1.0 μs;單晶結構顯示,相較於化合物26DAcBPy和26DPXZBPy的U型構造,25DAcBPy展現兩種相異的直鏈(linear chain)形狀。三個分子結構中的吡啶與鄰位苯甲酰形成分子內氫鍵,增加材料的剛性,並提供較高的發光量子效率;此外,這些分子中的推電子基團與橋基苯環之間擁有較大的二面角度,使最高佔有軌域(HOMO)及最低未佔有軌域(LUMO)的位置分散,以達到較小的ΔEST;結合小的ΔEST與良好的發光量子效率,材料26DAcBPy的最大外部量子效率可達23.1 %,且在高亮度的效率衰退也不明顯。
在第三章節中,描述兩個TADF發光體(DMAC-BPm和DMAC-MBPm)的分子設計與合成步驟;這些分子的結構骨架是由推電子基-拉電子基-推電子基組成,我們根據分子設計,進行電激發光特性的研究。由於電子予體和電子受體核心雙嘧啶之間的正交構型,促使HOMO/LUMO的立體分散,使這些分子進而展現熱活化延遲螢光特性;這些摻雜體除了擁有極高的發光量子效率(>86 %),還擁有較小的ΔEST (0.17-0.20 eV);材料DMAC-MBPm的光色為天藍光,最大外部量子效率為24.4 %,最大電流效率與功率效率分別為56.5 cd/A、50.5 lm/W,而最大亮度為1821 cd/m2;此研究有助於未來發展含推電子基-拉電子基-推電子基之高效率線型TADF分子。
This dissertation contains thermally activated delayed fluorescence in OLED applications. Theoretical calculation (TD-DFT), design and synthesis, photophysical properties, device fabrication, and electroluminescence properties have been discussed. For the better understanding, this dissertation has been divided into three chapters.
Chapter one describes the design and synthesis of highly efficient sky blue TADF dopants 35DCzBPym, 35DTCzBPym, 25DCzBPym and 25DTCzBPym. The molecular structure containing benzoyl pyrimidine (BPym) as acceptor and carbazole as donor. These compounds, exhibit sky blue emissions (484-500 nm), very small energy gaps between S1 and T1 (∆EST) of 40-100 meV and high photoluminescence quantum yields (PLQY > 87%). The delayed fluorescence measurement shows these compounds possess TADF property. We have achieved maximum EQE up to 23.1 % for bluish-green (25DTCzBPym) emitters and 20.8 % for sky blue (35DTCzBPym) emitters and also have low efficiency roll-off at 1000 cdm-2.
Chapter two, we have reported three yellow-green to yellow TADF dopants 26DAcBPy, 25DAcBPy and 26DPXZBPy containing dibenzoyl pyridine as the acceptor and dimethylacridine (Ac) and phenoxazine (PXZ) as the donors with short delayed fluorescence lifetimes of 2.3 μs, 1.9 μs, and 1.0 μs, respectively. The crystal structures show that 26DAcBPy and 26DPXZBPy have a U shape conformation and 25DAcBPy a linear chain structure. All three molecules show intramolecular hydrogen bonding between the pyridine nitrogen and the o-hydrogen of a phenyl ring. These conformations appear to be the result of hydrogen bonding, which leads to rigid structures and provides higher photoluminescence quantum yield. In addition to this, these molecules show large dihedral angles between the donor group and the spacer phenyl unit leading to a well-separated HOMO and LUMO and small ΔEST values. Combined with the small ΔEST values, and good photoluminescence (PL) quantum yields, the 26DAcBPy-based devices show a maximum efficiency of 23.1% with a mild efficiency roll-off.
Chapter three describes about the design and synthesis of two TADF emitters. The electroluminance properties of these emitters were studied based on a donor-acceptor-donor types of molecules (DMAC-BPm and DMAC-MBPm). They exhibit TADF due to their orthogonal geometry between the donor unit and the 5,5’-bipyrimidine accepting core which in turn facilitates the HOMO/ LUMO spatial separation. These emitters concurrently possess high PLQY (> 86%) and small ΔEST (0.17-0.20 eV). DMAC-MBPm exhibit blue emission with high EQE 24.4 %. The current efficiency and power efficiency are 56.5 cd/A and 50.5 lm/W and maximum luminance of 1821 cd/m2. This study would be very useful for exploring Donor–Acceptor–Donor-type of TADF molecules with high PLQY.
Chapter-I
[1] Y.-A. Ono. Electroluminescence in Encyclopedia of Applied Physics, 1st ed. VCH, Weinheim 1993.
[2] A. Kitai, Luminescent materials and Applications. New York: John Wiley and Sons; 2008.
[3] M. Pope, H. P. Kallmann and P. Magnante, Electroluminescence in Organic
Crystals, J. Chem. Phys. 1963, 38, 2042.
[4] C. W. Tang and S. A. VanSlyke, Organic electroluminescent diodes, Appl. Phys.
Lett. 1987, 51, 913-915.
[5] C. W. Tang, S. A. VanSlyke, and C. H. Chen, Electroluminescence of doped
organic thin films, J. Appl. Phys. 1989, 65, 3610.
[6] C. A. Parker, Advances in Photochemistry; Wiley & Sons, Inc.: Hoboken, NJ, 1964.
[7] C. A. Parker, C. G. Hatchard, Triplet-singlet emission in fluid solutions; Phosphorescence of eosin. Trans. Faraday Soc. 1961, 57, 1894−1904.
[8] A. Jablonski, Efficiency of Anti-Stokes Fluorescence in Dyes. Nature 1933, 131, 839−840.
[9] A. Jablonski, About the mechanism of photo-luminescence of dye phosphors. Eur. Phys. J. A 1935, 94, 38−46.
[10] G. N. Lewis; D. Lipkin; T. T. Magel, Reversible photochemical processes in rigid media. A study of the phosphorescent state. J. Am. Chem. Soc. 1941, 63, 3005−3018.
[11] N. J. Turro, Modern Molecular Photochemistry; University Science Books: Sausalito, CA, 1978; pp98−100.
[12] H. Uoyama, K. Goushi, K.Shizu, H. Nomura, C. Adachi. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234−238.
[13] S. Hirata; Y. Sakai; K. Masui; H. Tanaka; S. Y. Lee; H. Nomura; N. Nakamura; M. Yasumatsu; H. Nakanotani; Q. Zhang; K. Shizu; H. Miyazaki; C. Adachi. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 2015, 14, 330−336.
[14] Q. Zhang; B. Li; S. Huang; H. Nomura; H. Tanaka; C. Adachi, Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 2014, 8, 326−332.
[15] N. J. Turro, Modern Molecular Photochemistry; University Science Books: Sausalito, CA, 1978; pp98−100.
[16] J.-S. Kim; P.-K.-H. Ho; N.-C. Greenham; R.-H. Friends, J. Appl. Phys. 2000, 88, 1073-1081.
[17] B. Valeur, M. N. Berberan-Santos, Introduction, Molecular Fluorescence: Principles and Applications, 2nd Ed. Wiley-VCH (2012) pp 01-25
[18] Delorme.; F. Perrin, J. Phys. Rad. Ser. 1929, 10, 177.
[19] J.-H. Huang; J.-H. Su; H. Tian, J. Mater. Chem. 2012, 22, 10977-10989.
[20] J.-U. Wallace; S.-H. Chen, Adv. Polym. Sci. 2008, 212, 145-186.
[21] K. Uoyama; K. Goushi; H. Shizu; Nomura; C. Adachi, Nature 2012, 492, 234.
[22] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu and C.-H. Cheng, Nat. Photonics, 2018, 12, 235–240.
[23] T.Takahashi,K.Shizu,T. Yasuda,K.TogashiandC.Adachi, Sci. Technol. Adv. Mater., 2014, 15, 034202.
[24] Z. Yang, Z. Mao, Z. Xie, Y.Zhang, S. Liu, J. Zhao, J.Xu, Z. Chi and M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915–1016.
[25] X. Cao, D. Zhang, S. Zhang, Y. Tao and W. Huang, J. Mater. Chem. C, 2017, 5, 7699–7714.
[26] P. Rajamalli, N. Senthilkumar, P. Y. Huang, C. C. Ren-Wu, H. W. Lin and C. H. Cheng, J. Am. Chem. Soc., 2017, 139, 10948–10951.
[27] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki and C. Adachi, J. Am. Chem. Soc., 2012, 134, 14706–14709.
[28] C. S. Oh, D. d. S. Pereira, S. H. Han, H.-J. Park, H. F. Higginbotham, A. P. Monkman and J. Y. Lee, ACS Appl. Mater. Interfaces, 2018, 10, 35420–35429.
[29] J. Jayakumar, T.-L. Wu, M.-J. Huang, P.-Y. Huang, T.-Y. Chou, H.-W. Lin and C.-H. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 21042–21048.
Chapter-1
[1] a) T. M. Figueira-Duarte, K. Muellen, Chem. Rev. 2011, 111, 7260. b) M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, Science 2011, 332, 570.
[2] a) J. B. You, L. T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, Nat. Commun. 2013, 4, 1446. b) J. You, Z. Hong, K. Ohya, S. Ye, G. Li, Adv. Mater. 2013, 25, 3973.
[3] E. G. Wang, W. Mammo, M. R. Andersson, Adv. Mater. 2014, 26, 1801.
[4] a) R. Xia, W. Lai, P. A. Levermore, W. Huang, D. D. C. Bradley, Adv. Funct. Mater. 2009, 19, 2844. b) B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, D. D. C. Bradley, Nat. Mater. 2008, 7, 376.
[5] (a) Organic Light-Emitting Devices: Synthesis Properties and Applications; K. Müllen, U. Scherf, Eds.; Wiley-VCH: Weinheim, 2006; (b) G. M. Farinola, R. Ragni, Chem. Soc. Rev. 2011, 40, 3467−3482; (c) G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, K. Leo, Adv. Mater. 2007, 19, 3672−3676; (d) H.-H. Chou, Y.-H. Chen, H.-P. Hsu, W.-H. Chang, Y.H. Chen, C.-H. Cheng, Adv. Mater. 2012, 24, 5867−5871.
[6] a) H-H Chou and C-H Cheng, Adv. Mater. 2010, 22, 2468–2471, b) V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov, Y. Wang, Chem. Commun. 2001, 1494; c) P. Coppo, E. A. Plummer, L. De Cola, Chem. Commun. 2004, 1774;
[7] S. Lukman, A. J. Musser, K. Chen, S. Athanasopoulos, C. K. Yong, Z. Zeng, Q. Ye, C. Chi, J. M. Hodgkiss, J. Wu, R. H. Friend, N. C. Greenham, Adv. Funct. Mater. 2015, DOI: 10.1002/adfm.201501537
[8] a) A. Chihaya, Jpn. J. Appl. Phys. 2014, 53, 060101. b) Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931. c) Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915.
[9] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
[10] a) D. R. Lee, M. Kim, S. K. Jeon, S. H. Hwang, C. W. Lee, J. Y. Lee, Adv. Mater. 2015, 27, 5861. b) J. W. Sun, J. Y. Baek, K.-H. Kim, C.-K. Moon, J.-H. Lee, S.-K. Kwon, Y.-H. Kim, J.-J. Kim, Chem. Mater. 2015, 27, 6675. c) C. Mayr, S. Y. Lee, T. D. Schmidt, T. Yasuda, C. Adachi, W. Brütting, Adv. Funct. Mater. 2014, 24, 5232; d) S. Y. Lee, Y. Takuma, N. Hiroko, C. Adachi, Appl. Phys. Lett. 2012, 101, 093306.
[11] C-Y. Chan, M. Tanaka, H. Nakanotani, C. Adachi, Nature communications (2018) 9:5036
[12] D. R. Lee, J. M. Choi, C. W. Lee, J. Y. Lee, ACS Appl. Mater. Interfaces 2016, 8, 23190−23196
[13] a) R. Komatsu, H. Sasabe, Y. Seino, K. Nakao, J. Kido, J. Mater. Chem. C 2016, 4, 2274. b) I. S. Park, J. Lee and T. Yasud, J. Mater. Chem. C, 2016, 4, 7911–7916.
[14] P. Ganesan, R. Ranganathan, Y. Chi, X. K. Liu, C. S. Lee, S. H. Liu, G. H. Lee, T. C. Lin, Y. T. Chen and P. T. Chou, Chemistry, 2016, 23, 2858–2866.
[15] T. Serevicius, T. Buciunas,J. Bucevicius, J. Dodonova, S. Tumkevicius, K. Kazlauskas and Saulius Jursenasa, J. Mater. Chem. C, 2018, 6, 11128—11136.
[16] Q. Zhang, S. Xiang, Z. Huang, S. Sun, S. Ye, X. Lv, W. Liu, R. Guo and L. Wang, Dyes Pigm., 2018, 155, 51–58.
[17] Q. Zhang, S. Sun, X. Lv, W. Liu, Ho. Zeng, R. Guo, S. Ye, P. Leng, S. Xiang and L. Wang, Mater. Chem. Front., 2018, 2, 2054—2062
[18] a) P. Rajamalli, N. Senthilkumar, P. Gandeepan, P-Y. Huang, M-J. Huang, C-Z. R-Wu, C-Y. Yang, M-J. Chiu, L-K. Chu, H-W. Lin, C-H Cheng, J. Am. Chem. Soc., 2016, 138, 628. b) P. Rajamalli, N. Senthilkumar, P. Gandeepan, C-Z. R-Wu, H-W Linb, C-H Cheng, J. Mater. Chem. C, 2016, 4, 900. c) P. Rajamalli, N. Senthilkumar, P. Gandeepan, C-Z. R-Wu, H-W. Lin, C-H Cheng, ACS Appl. Mater. Interfaces, 2016, 8, 27026. d) P. Rajamalli, V. Thangraji N. Senthilkumar, P. Gandeepan, C-Z. R-Wu, H-W Linb, C-H Cheng, J. Mater. Chem. C, 2017, 5, 2919. e) P. Rajamalli, N. Senthilkumar, P.-Y. Huang, C.-C. Ren-Wu, H.-W. Lin, and C.-H. Cheng, J. Am. Chem. Soc. 2017, 139, 10948.
[19] T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,T.Keith,R.Kobayashi,J.Normand,K.Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[20] P. Rajamalli, N. Senthilkumar, P. Gandeepan, P.-Y. Huang Huang, M.-J.; Ren-Wu, C.-Z.; C.-Y.Yang, M.-J. Chiu, L.-K. Chu, H.-W. Lin, C.-H. Cheng. J. Am. Chem. Soc. 2016, 138, 628-634.
[21] a) P. Rajamalli, N. Senthilkumar, P. Gandeepan, P-Y. Huang, M-J. Huang, C-Z. R-Wu, C-Y. Yang, M-J. Chiu, L-K. Chu, H-W. Lin, C-H Cheng, J. Am. Chem. Soc., 2016, 138, 628. b) P. Rajamalli, V. Thangraji N. Senthilkumar, P. Gandeepan, C-Z. R-Wu, H-W Linb, C-H Cheng, J. Mater. Chem. C, 2017, 5, 2919.
[22] a) Y. Hong, J. W-Y. Lam, B.-Z. Tang, Chem. Com-mun. 2009, 4332–4353. b) L. Zhua, Y. Zhao. J. Mater. Chem. C, 2013, 1, 1059–1065.
[23] J.-J. Lin, W.-S. Liao, H.-J. Huang, F.-I Wu, C.-H. Cheng. Adv. Funct. Mater. 2008, 18, 485-491.
[24] b) H. Shin, J.-H. Lee, C.-K. Moon, J.-S. Huh, B. Sim, J.-J. Kim. Adv. Mater. 2016, 28, 4920−4925.
Chapter-2
[1] G. M. Farinola and R. Ragni, Chem. Soc. Rev., 2011, 40, 3467-3482.
[2] G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer and K. Leo, Adv. Mater., 2007, 19, 3672–3676.
[3] H.-H. Chou, Y.-H. Chen, H.-P. Hsu, W.-H. Chang, Y.-H. Chen and C.-H. Cheng, Adv. Mater., 2012, 24, 5867–5871.
[4] B. Minaev, G. Baryshnikov and H. Agren, Phys. Chem. Chem. Phys., 2014, 16, 1719–1758.
[5] C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys., 2001, 90, 5048–5051.
[6] R. Mondal, I. B. Lozada, R. L. Davis, J. A. G. Williams and D. E. Herbert, Inorg. Chem., 2018, 57, 4966–4978.
[7] J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, D. J. Giesen, S. B. Harkins, A. J. M. Miller, S. F. Mickenberg and J. C. Peters, J. Am. Chem. Soc., 2010, 132, 9499–9508.
[8] D. Volz, M. Wallesch, C. Fle ´chon, M. Danz, A. Verma, J. M. Navarro, D. M. Zink, S. Bra ¨se and T. Baumann, Green Chem., 2015, 17, 1988–2011.
[9] L.-S. Cui, Y.-L. Deng, D. P.-K. Tsang, Z.-Q. Jiang, Q. Zhang, L.-S. Liao and C. Adachi, Adv. Mater., 2016, 28, 7620–7625.
[10] M. Y. Wong and E. Zysman-Colman, Adv. Mater., 2017, 29, 1605444.
[11] F. B. Dias, T. J. Penfold and A. P. Monkman, Methods Appl. Fluoresc., 2017, 5, 012001.
[12] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu and C.-H. Cheng, Nat. Photonics, 2018, 12, 235–240.
[13] T.Takahashi,K.Shizu,T. Yasuda,K.TogashiandC.Adachi, Sci. Technol. Adv. Mater., 2014, 15, 034202.
[14] Z. Yang, Z. Mao, Z. Xie, Y.Zhang, S. Liu, J. Zhao, J.Xu, Z. Chi and M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915–1016.
[15] X. Cao, D. Zhang, S. Zhang, Y. Tao and W. Huang, J. Mater. Chem. C, 2017, 5, 7699–7714.
[16] P. Rajamalli, N. Senthilkumar, P. Y. Huang, C. C. Ren-Wu, H. W. Lin and C. H. Cheng, J. Am. Chem. Soc., 2017, 139, 10948–10951.
[17] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki and C. Adachi, J. Am. Chem. Soc., 2012, 134, 14706–14709.
[18] C. S. Oh, D. d. S. Pereira, S. H. Han, H.-J. Park, H. F. Higginbotham, A. P. Monkman and J. Y. Lee, ACS Appl. Mater. Interfaces, 2018, 10, 35420–35429.
[19] J. Jayakumar, T.-L. Wu, M.-J. Huang, P.-Y. Huang, T.-Y. Chou, H.-W. Lin and C.-H. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 21042–21048.
[20] I. Marghad, D. H. Kim, X. Tian, F. Mathevet, C. Gosmini, J.-C.Ribierreand, C.Adachi, ACS Omega, 2018, 3, 2254–2260.
[21] Y. Xiang, S. Gong, Y. Zhao, X. Yin, J. Luo, K. Wu, Z.-H. Lu and C. Yang, J. Mater. Chem. C, 2016, 4, 9998–10004.
[22] G. Xie, X. Li, D. Chen, Z. Wang, X.Cai, D. Chen, Y. Li, K. Liu, Y. Cao and S.-J. Su, Adv. Mater., 2016, 28, 181–187.
[23] S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang and C. Adachi, Angew. Chem., Int. Ed., 2014, 53, 6402–6406.
[24] S. Y. Lee, T. Yasuda, I. S. Park and C. Adachi, Dalton Trans., 2015, 44, 8356–8359.
[25] Y. Xiang, Z.-L. Zhu, D. Xie, S. Gong, K. Wu, G. Xie, C.-S. Lee and C. Yang, J. Mater. Chem. C, 2018, 6, 7111–7118.
[26] M.-D. Bai, M. Zhang, K. Wang, Y.-Z. Shi, J.-X. Chen, H. Lin, S.-L. Tao, C.-J. Zheng and X.-H. Zhang, Org. Electron., 2018, 62, 220–226.
[27] P. Rajamalli, N. Senthilkumar, P. Gandeepan, P.-Y. Huang, M.-J. Huang, C.-Z. Ren-Wu, C.-Y. Yang, M.-J. Chiu, L.-K. Chu, H.-W. Lin and C.-H. Cheng, J. Am. Chem. Soc., 2016, 138, 628–634.
[28] P. Rajamalli, N. Senthilkumar, P. Gandeepan, C.-Z. Ren-Wu, H.-W. Lin and C.-H. Cheng, J. Mater. Chem. C, 2016, 4, 900–904.
[29] P. Rajamalli, V. Thangaraji, N. Senthilkumar, C.-C. Ren-Wu, H.-W. Lin and C.-H. Cheng, J. Mater. Chem. C, 2017, 5, 2919–2926
[30] P.Rajamalli, N.Senthilkumar,P. Gandeepan,C.-C. Ren-Wu, H.-W. Lin and C.-H. Cheng, ACS Appl. Mater. Interfaces, 2016, 8, 27026–27034.
[31] P. J. Wright, J. L. Kolanowski, W. K. Filipek, Z. Lim, E. G. Moore, S. Stagni, E. J. New and M. Massi, Eur. J. Inorg. Chem., 2017, 5260–5270.
[32] M. J. Frisch, G. W. Trucks, H. B. Schegel, G. E. Scuseria, M. A. Robb, J. R. Cheesemen, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Lzmaylov, J. L. Sonnenberg, D. illiams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Hederson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T.Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[33] P. Misiak, A. T. Dubis and A. Lapinski, J. Spectrosc., 2018, 15, DOI: 10.1155/2018/1048157.
[34] Y. Zhang, Z. Li, C. Li and Y. Wang, Front. Chem., 2019, 7, 302.
[35] F. Ma, Y. Cheng, X. Zhang, X. Gu, Y. Zheng, K. Hasrat and Z. Qi, Dyes Pigm., 2019, 166, 245–253.
[36] X.-K. Chen, Y. Tsuchiya, Y. Ishikawa, C. Zhong, C. Adachi and J.-L. Bre ´das, Adv. Mater., 2017, 29, 1702767.
[37] V. Thangaraji, P. Rajamalli, J. Jayakumar, M.-J. Huang, Y.-W. Chen and C.-H. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 17128–17133.
[38] Y. Olivier, M. Moral, L. Muccioli and J.-C. Sancho-Garcı ´a, J. Mater. Chem. C, 2017, 5, 5718–5729.
[39] T.-L. Wu, S.-H. Lo, Y.-C. Chang, M.-J. Huang and C.-H. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 10768–10776.
[40] K. Guo, H. Wang, Z. Wang, C. Si, C. Peng, G. Chen, J. Zhang, G. Wang and B. Wei, Chem. Sci., 2017, 8, 1259–1268.
[41] F. Ni, Z. Zhu, X. Tong, M. Xie, Q. Zhao, C. Zhong, Y. Zou and C. Yang, Chem. Sci., 2018, 9, 6150–6155.
[42] S. Kothavale, K. H. Lee and J. Y. Lee, ACS Appl. Mater. Interfaces, 2019, 11, 17583–17591.
[43] W.-L. Tsai, M.-H. Huang, W.-K. Lee, Y.-J. Hsu, K.-C. Pan, Y.-H. Huang, H.-C. Ting, M. Sarma, Y.-Y. Ho, H.-C. Hu, C.-C. Chen, M.-T. Lee, K.-T. Wong and C.-C. Wu, Chem. Commun., 2015, 51, 13662–13665.
[44] Z. Chen, Z. Wu, F. Ni, C. Zhong, W. Zeng, D. Wei, K. An, D. Ma and C. Yang, J. Mater. Chem. C, 2018, 6, 6543–6548.
[45] A.Tomkeviciene, T. , M.Guzauskas, V. Andruleviciene, D. Volyniuk and J. V. Grazulevicius, Org. Electron., 2019, 70, 227–239.
[46] C. Duan, J. Li, C. Han, D. Ding, H. Yang, Y. Wei and H. Xu, Chem. Mater., 2016, 28, 5667–5679.
[47] J.-J. Lin, W.-S. Liao, H.-J. Huang, F.-I Wu, C.-H. Cheng. Adv. Funct. Mater. 2008, 18, 485-491.
[48] S. Kothavale, K. H. Lee and J. Y. Lee, ACS Appl. Mater. Interfaces, 2019, 11, 17583-17591.
[49] S. Gan, S. Hu, X.-L. Li, J. Zeng, D. Zhang, T. Huang, W. Luo, Z. Zhao, L. Duan, S.-J. Su and B. Z. Tang, ACS Appl Mater Interfaces, 2018, 10, 17327-17334.
Chapter-3
[1] Organic Light-Emitting Devices: Synthesis Properties and Applications; Müllen, K., Scherf, U., Eds.; Wiley-VCH: Weinheim, 2006.
[2] Farinola, G. M.; Ragni, R. Chem. Soc. Rev. 2011, 40, 3467.
[3] (a) Schwartz, G.; Pfeiffer, M.; Reineke, S.; Walzer, K.; Leo, K. Adv. Mater. 2007, 19, 3672. (b) Chou, H.-H.; Chen, Y.-H.; Hsu, H.-P.; Chang, W.-H.; Chen, Y.H.; Cheng, C.-H. Adv. Mater. 2012, 24, 5867.
[4] B. Minaev, G. Baryshnikov, H. Agren; Phys. Chem. Chem. Phys. 2014, 16, 1719.
[5] C.-H. Fan, P. Sun, T.-H. Su, C.-H. Cheng; Adv. Mater. 2011, 23, 2981.
[6] P. Tao, W-L. Li, J. Zhang, S. Guo, Q. Zhao, H. Wang, B. Wei, S-J. Liu, X-H. Zhou, Q. Yu, B-S. Xu, W. Huang; Adv. Funct. Mater. 2016, 26, 881.
[7] (a) M. Numata, T. Yasuda and C. Adachi; Chem. Commun., 2015, 51, 9443--9446. (b) Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang; Adv. Mater. 2014, 26, 7931.
[8] T. Takahashi, K. Shizu, T. Yasuda, K. Togashi, C. Adachi, Sci. Technol. Adv. Mater. 2016, 15, 034202;
[9] W. J. Park, Y. Lee, J. Y. Kim, D. W. Yoon, J. Kim, S. H. Chae, H. Kim, G. Lee, S. Shim, J. H. Yang, S. J. Lee, Synth. Met. 2015, 209, 99;
[10] T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777;
[11] (a) T. Nakagawa, S. Y. Ku, K. T. Wong, C. Adachi, Chem. Commun. 2012, 48, 9580; (b) M. Y. Wong, E. Zysman-Colman; Adv. Mater. 2017, 1605444.
[12] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234
[13] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134, 14706;
[14] M. Kim, J. Min Choi, J. Y. Lee; Chem. Commun., 2016, 52, 10032
[15] P. Ganesan, R. Ranganathan, Y. Chi, X.-K. Liu, C.-S. Lee, S.-H. Liu, G.-H. Lee, T.-C. Lin, Y.-T. Chen, P.-T. Chou, Chem. Eur. J. 2017, 23, 2858.
[16] R. Komatsu, H. Sasabe, Y. Seino, K. Nakao, J. Kido, J. Mater. Chem. C 2016, 4, 2274.
[17] M. J. Frisch, G. W. Trucks, H. B. Schegel, G. E. Scuseria, M. A. Robb, J. R. Cheesemen, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Lzmaylov, J. L. Sonnenberg, D. illiams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Hederson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,T.Keith,R.Kobayashi,J.Normand,K.Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[18] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. ACS Appl. Mater. Interfaces 2016, 8, 27026−27034.
[19] Rajamalli, P.; Thangaraji, V.; Senthilkumar, N.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C. H. J. Mater. Chem. C, 2017, 5, 2919−2926.
[20] Sun, J. W.; Kim, K.-H.; Moon, C.-K.; Lee, J.-H.; Kim, J.-J. Highly Efficient Sky-Blue Fluorescent Organic Light Emitting Diode Based on Mixed Cohost System for Thermally Activated Delayed Fluorescence Emitter (2CzPN). ACS Appl. Mater. Interfaces 2016, 8, 9806−9810.
[21] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H. A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. J. Am. Chem. Soc. 2016, 138, 628− 634.
[22] Lin, J.-J.; Liao, W.-S.; Huang, H.-J.; Wu, F.-I.; Cheng, C.-H. Adv. Funct. Mater. 2008, 18, 485-491.
[23] Rajamalli, P.; Senthilkumar, N.; Huang, P.-Y.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. J. Am. Chem. Soc. 2017, 139, 10948−10951
[24] S. Kothavale, K. H. Lee and J. Y. Lee, ACS Appl. Mater. Interfaces, 2019, 11, 17583-17591.