簡易檢索 / 詳目顯示

研究生: 潘恩帝
Pandidurai, Jayabalan
論文名稱: 設計與合成苯甲醯吡啶和嘧啶衍生物之熱活化延遲螢光材料及其於效率有機發光二極體之應用
Design and Synthesis of Benzoyl-Pyridine-and-Pyrimidine- Based Thermally Activated Delayed Fluorescence Emitters and their Application in Efficient OLEDs
指導教授: 鄭建鴻
CHENG, CHIEN-HUNG
口試委員: 廖文峯
LIAW, WEN-FENG
周鶴修
Chou, Ho-Hsiu
許千樹
Hsu, Chain-Shu
洪文誼
Hung, Wen-Yi
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 190
中文關鍵詞: 有機發光二極體熱活化延遲螢光外部量子效率發光量子效率光致發光
外文關鍵詞: OLED, TADF, EQE, PLQY, PL
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文包含熱活化延遲螢光材料在有機發光二極體之應用,我們進行理論計算、分子設計與合成、光物理特性、元件製作及電激發光性質的討論;為了更好的分析與理解,這篇論文分成下列三個章節主題:
    在章節一中,包含四個高效率天藍光熱活化延遲螢光摻雜體35DczBPym、35DTCzBPym、25DczBPym、25DTCzBPym的設計和合成;這些分子的結構皆由電子予體苯甲酰嘧啶(BPym)和電子供體咔唑組成;這些化合物的放光光色為天藍光至藍綠光(484-500 nm),並同時展現極小的∆EST (40-100 meV)和較高的發光量子效率(PLQY > 87%);經由延遲螢光生命期的量測證實這些化合物具備熱活化延遲螢光的特性;在元件表現上,藍綠光發光體25DTCzBPym和天藍光發光體35DTCzBPym的最大外部量子效率高達23.1 %、20.8 %,同時在亮度為1000 cdm-2仍擁有較小的效率滾降。
    在第二章節中,我們發表了三個黃綠光至黃光之TADF摻雜發光體,分別為26DAcBPy、25DAcBPy、26DPXZBPy;在分子的設計上,拉電子基團為二苯甲酰吡啶,推電子基團分別為二甲基吖啶(Ac)和酚噁嗪(PXZ),而26DAcBPy、25DAcBPy、26DPXZBPy的延遲螢光生命期依序為2.3 μs、1.9 μs、1.0 μs;單晶結構顯示,相較於化合物26DAcBPy和26DPXZBPy的U型構造,25DAcBPy展現兩種相異的直鏈(linear chain)形狀。三個分子結構中的吡啶與鄰位苯甲酰形成分子內氫鍵,增加材料的剛性,並提供較高的發光量子效率;此外,這些分子中的推電子基團與橋基苯環之間擁有較大的二面角度,使最高佔有軌域(HOMO)及最低未佔有軌域(LUMO)的位置分散,以達到較小的ΔEST;結合小的ΔEST與良好的發光量子效率,材料26DAcBPy的最大外部量子效率可達23.1 %,且在高亮度的效率衰退也不明顯。
    在第三章節中,描述兩個TADF發光體(DMAC-BPm和DMAC-MBPm)的分子設計與合成步驟;這些分子的結構骨架是由推電子基-拉電子基-推電子基組成,我們根據分子設計,進行電激發光特性的研究。由於電子予體和電子受體核心雙嘧啶之間的正交構型,促使HOMO/LUMO的立體分散,使這些分子進而展現熱活化延遲螢光特性;這些摻雜體除了擁有極高的發光量子效率(>86 %),還擁有較小的ΔEST (0.17-0.20 eV);材料DMAC-MBPm的光色為天藍光,最大外部量子效率為24.4 %,最大電流效率與功率效率分別為56.5 cd/A、50.5 lm/W,而最大亮度為1821 cd/m2;此研究有助於未來發展含推電子基-拉電子基-推電子基之高效率線型TADF分子。


    This dissertation contains thermally activated delayed fluorescence in OLED applications. Theoretical calculation (TD-DFT), design and synthesis, photophysical properties, device fabrication, and electroluminescence properties have been discussed. For the better understanding, this dissertation has been divided into three chapters.
    Chapter one describes the design and synthesis of highly efficient sky blue TADF dopants 35DCzBPym, 35DTCzBPym, 25DCzBPym and 25DTCzBPym. The molecular structure containing benzoyl pyrimidine (BPym) as acceptor and carbazole as donor. These compounds, exhibit sky blue emissions (484-500 nm), very small energy gaps between S1 and T1 (∆EST) of 40-100 meV and high photoluminescence quantum yields (PLQY > 87%). The delayed fluorescence measurement shows these compounds possess TADF property. We have achieved maximum EQE up to 23.1 % for bluish-green (25DTCzBPym) emitters and 20.8 % for sky blue (35DTCzBPym) emitters and also have low efficiency roll-off at 1000 cdm-2.
    Chapter two, we have reported three yellow-green to yellow TADF dopants 26DAcBPy, 25DAcBPy and 26DPXZBPy containing dibenzoyl pyridine as the acceptor and dimethylacridine (Ac) and phenoxazine (PXZ) as the donors with short delayed fluorescence lifetimes of 2.3 μs, 1.9 μs, and 1.0 μs, respectively. The crystal structures show that 26DAcBPy and 26DPXZBPy have a U shape conformation and 25DAcBPy a linear chain structure. All three molecules show intramolecular hydrogen bonding between the pyridine nitrogen and the o-hydrogen of a phenyl ring. These conformations appear to be the result of hydrogen bonding, which leads to rigid structures and provides higher photoluminescence quantum yield. In addition to this, these molecules show large dihedral angles between the donor group and the spacer phenyl unit leading to a well-separated HOMO and LUMO and small ΔEST values. Combined with the small ΔEST values, and good photoluminescence (PL) quantum yields, the 26DAcBPy-based devices show a maximum efficiency of 23.1% with a mild efficiency roll-off.
    Chapter three describes about the design and synthesis of two TADF emitters. The electroluminance properties of these emitters were studied based on a donor-acceptor-donor types of molecules (DMAC-BPm and DMAC-MBPm). They exhibit TADF due to their orthogonal geometry between the donor unit and the 5,5’-bipyrimidine accepting core which in turn facilitates the HOMO/ LUMO spatial separation. These emitters concurrently possess high PLQY (> 86%) and small ΔEST (0.17-0.20 eV). DMAC-MBPm exhibit blue emission with high EQE 24.4 %. The current efficiency and power efficiency are 56.5 cd/A and 50.5 lm/W and maximum luminance of 1821 cd/m2. This study would be very useful for exploring Donor–Acceptor–Donor-type of TADF molecules with high PLQY.

    TABLE OF CONTENTS Page Abstract I Acknowledgement v List of Schemes XI List of Tables XII List of Figures XV List of Publications XXIV Abbreviations and Symbols XXV LIST OF CHAPTERS Chapter-I: Background and Introduction of OLEDs 1 I. 1 Evolution of Organic Electroluminescence 3 I. 2 Basic OLED Structure and Mechanism 4 I. 3 Introduction to TADF Materials 7 I. 4 The Emission Efficiency of OLEDs 10 I. 5 Perrin-Jablonski Diagram 11 I. 6 Literature Review of TADF Martials 18 I. 7 References 20 Chapter-1: Benzoyl pyrimidine-based Sky-blue thermally activated delayed fluorescence emitters and the application in efficient OLEDs. 23 1. 1 Introduction 25 1. 2 Theoretical Calculations (TD-DFT) of TADF Materials 27 1. 3 Synthesis scheme and Crystal Structure 33 1. 4 Measurement of Thermal Properties 34 1. 5 Photophysical Properties 36 1. 6 Photoluminescence Quantum Yield 41 1. 7 Electrochemical Properties 42 1. 8 Temperature-Dependent Transient Photoluminescence 44 1. 9 Electroluminescence Properties 46 1. 10 Device Optimizations 50 1. 11 Conclusions 62 1. 12 Experimental Section 62 1. 13 References 69 Chapter-2: Effects of intramolecular hydrogen bonding on the conformation and luminescence properties of dibenzoylpyridine-based thermally activated delayed fluorescence materials 73 2.1 Introduction 75 2.2 Theoretical Calculations (TD-DFT) of TADF Materials 78 2.3 Synthesis Scheme and Crystal Structure 83 2.4 Measurement of Thermal Properties 86 2. 5 Photophysical Properties 88 2. 6 Photoluminescence Quantum Yield 91 2. 7 Electrochemical Properties 92 2. 8 Temperature-Dependent Transient Photoluminescence 95 2. 9 Electroluminescence Properties 98 2. 10 Device Optimizations 102 2. 11 Conclusions 117 2. 12 Experimental Section 117 2. 13 References 120 Chapter-3: Thermally Activated Delayed-Fluorescent Emitters Having Donor-Acceptor-Donor Type Structures with 5,5’-Bipyrimidine as the Acceptor 126 3. 1 Introduction 128 3. 2 Theoretical Calculations (TD-DFT) of TADF Materials 130 3. 3 Synthesis Scheme and Crystal Structure 133 3. 4 Measurement of Thermal Properties 134 3. 5 Photophysical Properties 135 3. 6 Photoluminescence Quantum Yield 138 3. 7 Electrochemical Properties 139 3. 8 Temperature-Dependent Transient Photoluminescence 141 3. 9 Electroluminescence Properties 143 3. 10 Device Optimizations 146 3. 11 Conclusions 154 3. 12 Experimental Section 154 3. 13 References 158 Crystal structures, 1H and 13C-NMR Spectra 161 LIST OF SCHEMES Scheme 1. 1 Synthesis scheme of 35DCzBPym, 35DTCzBPym, 25DCzBPym and 25DTCzBPym-------------------------------------------------------------------------------------------------------------------33 Scheme 2. 1 Synthesis scheme of 26DAcBPy, 25DAcBPy, and 26DPXZBPy------------------------------------------------------------------------------------------------------------------------------------------83 Scheme 3. 1 Synthesis scheme of DMAC-BPm, and DMAC-MBPm-------------------------------133 LIST OF TABLES Chapter-1 Table 1. 1. Singlet and triplet excitation states, and transition configurations of the 35DCzBPym by TD-DFT at the B3LYP/6-31G (d,p)--------------------------------------------------------------------29 Table 1. 2. Singlet and triplet excitation states, and transition configurations of the 35DTCzBPym by TD-DFT at the B3LYP/6-31G (d,p)--------------------------------------------------------------------30 Table 1. 3. Singlet and triplet excitation states, and transition configurations of the 25DCzBPym by TD-DFT at the B3LYP/6-31G (d,p)--------------------------------------------------------------------31 Table 1. 4. Singlet and triplet excitation states, and transition configurations of the 25DTCzBPym by TD-DFT at the B3LYP/6-31G (d,p)--------------------------------------------------------------------32 Table 1. 5. The photophysical and electrochemical data of these four emitters ---------------------44 Table 1. 6. EL performance of device 1A1-1A3 using 25DTCzBPym as dopants------------------50 Table 1. 7. EL performance of device 1A4 – 1A7 using 25DTCzBPym as dopants----------------52 Table 1. 8. EL performance of device 1A8 – 1A11 using 35DTCzBPym as dopants--------------54 Table 1. 9. EL performance of device 1A12 – 1A15 using 25DTCzBPym as dopants-------------56 Table 1. 10. EL performance of device 1A16 – 1A9 using 35DCzBPym, 35DTCzBPym, 25DCzBPym and 25TDCzBPym as dopants-------------------------------------------------------------60 Chapter-2 Table 2. 1. Singlet and triplet excitation states, and transition configurations of the 26DAcBPy by TD-DFT at the B3LYP/6-31G (d,p).-----------------------------------------------------------------------80 Table 2. 2. Singlet and triplet excitation states, and transition configurations of the 25DAcBPy by TD-DFT at the B3LYP/6-31G (d,p)-----------------------------------------------------------------------81 Table 2. 3. Singlet and triplet excitation states, and transition configurations of the 26DPXZBPy by TD-DFT at the B3LYP/6-31G(d,p)--------------------------------------------------------------------82 Table 2. 4. The photophysical and electrochemical data of these three emitters---------------------94 Table 2. 5. Summarized transient-PL data and the rate constants of TADF dopants---------------98 Table 2. 6. EL performance of device 2A1 - 2A4 using 26DAcBPy as dopants-------------------102 Table 2. 7. EL performance of device 2B1 – 2B4 using 26DAcBPy as dopants------------------104 Table 2. 8. EL performance of device 2B5 – 2B8 using 26DAcBPy as dopants------------------106 Table 2. 9. EL performance of device 2B9 – 2B12 using 26DAcBPy as dopants------------------108 Table 2. 10. EL performance of device 2B13 – 2B16 using 26DAcBPy as dopants---------------110 Table 2. 11. EL performance of device 2B17-2B19 using 26DAcBPy, 25DAcBPy and 26DPXZBPy as dopants-----------------------------------------------------------------------------------114 Chapter-3 Table 3. 1. Singlet and triplet excitation states, and transition configurations of the DMAC-BPm by TD-DFT at the B3LYP/6-31G (d,p)------------------------------------------------------------------131 Table 3. 2. Singlet and triplet excitation states, and transition configurations of the DMAC-MBPm by TD-DFT at the B3LYP/6-31G (d,p)------------------------------------------------------------------132 Table 3. 3. The photophysical and electrochemical data of these two emitters---------------------140 Table 3. 4. EL performance of device 3A1-3A3 using DMAC-BPm as dopants-------------------147 Table 3. 5. EL performance of device 3A4-3A5 using DMAC-MBPm as dopants----------------149 Table 3. 6. EL performance of device 3A7-3A8 using DMAC-MBPm and DMAC-BPm as dopants-------------------------------------------------------------------------------------------------------151 LIST OF FIGURES Chapter-1 Figure 1. 1. Structure of TADF molecules 35DCzBPym, 35DTCzBPym, 25DCzBPym and 25DTCzBPym------------------------------------------------------------------------------------------------27 Figure 1. 2. Structure and molecular orbital 35DCzBPym, 35DTCzBPym, 25DCzBPym and 25DTCzBPym------------------------------------------------------------------------------------------------28 Figure 1.3. The crystal structure of (a) 35DCzBPym and (c) 25DCzBPym-------------------------34 Figure 1. 4. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of 35DCzBPym------------------------------------------------------------------------35 Figure 1.5. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of 35DTCzBPym----------------------------------------------------------------------35 Figure 1.6. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of 25DCzBPym------------------------------------------------------------------------36 Figure 1.7. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of 25DTCzBPym----------------------------------------------------------------------36 Figure 1.8. Absorption spectra (a) and fluorescence spectra (b) of 35DCzBPym, in various solvents at RT (10-5 M) --------------------------------------------------------------------------------------38 Figure 1.9. Absorption spectra (a) and fluorescence spectra (b) of 35DTCzBPym, in various solvents at RT (10-5 M) --------------------------------------------------------------------------------------38 Figure 1.10. Absorption spectra (a) and fluorescence spectra (b) of 25DCzBPym, in various solvents at RT (10-5 M) --------------------------------------------------------------------------------------39 Figure 1.11. Absorption spectra (a) and fluorescence spectra (b) of 25DTCzBPym, in various solvents at RT (10-5 M) --------------------------------------------------------------------------------------39 Figure 1. 12. Fluorescence (Flu.) spectra of 35DCzBPym (a), 35DTCzBPym (b), 25DCzBPym (c), and 25DTCzBPym (d), in toluene (10-5 M) solution measured at room temperature and phosphorescence (Phos.) spectra in toluene (10-5 M) measured at 77 K, respectively--------------40 Figure 1. 13. PL and phosphorescence spectra of 35DCzBPym (a), 35DTCzBPym (b), 25DCzBPym (c), and 25DTCzBPym (d), doped in mCBP thin films (7 wt%)----------------------41 Figure 1. 14. Photoelectron spectroscopy of (a) 35DCzBPym, (b) 35DTCzBPym, (c) 25DCzBPym, and (d) 25DTCzBPym, measured in neat films-----------------------------------------------------------43 Figure 1. 15. The transient PL decay curve of 35DCzBPym (a), 35DTCzBPym (b), 25DCzBPym (c), and 25DTCzBPym (d), (7 wt% doped in mCBP thin films at 300 K) ---------------------------45 Figure 1. 16. The temperature-dependent transient PL decay for 35DCzBPym (a), 35DTCzBPym (b), 25DCzBPym (c), and 25DTCzBPym (d), in the thin film (7 wt% doped in mCBP) at various temperatures --------------------------------------------------------------------------------------------------46 Figure 1. 17. Hole transporting layer----------------------------------------------------------------------48 Figure 1. 18. Emitting layer--------------------------------------------------------------------------------48 Figure 1. 19. Electron transporting layer------------------------------------------------------------------48 Figure 1. 20. Electron & Hole blocking layer------------------------------------------------------------48 Figure 1. 21. The schematic diagram of the structure in this device and the energy levels of each material--------------------------------------------------------------------------------------------------------49 Figure 1. 22. The EL characteristic plots of device 1A1-1A3: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L), d) Current efficiency and Power efficiency vs Luminance------------------------------------------------------------------51 Figure 1. 23. The EL characteristic plots of device 1A4-1A7: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L), d) Current efficiency and Power efficiency vs Luminance------------------------------------------------------------------53 Figure 1. 24. The EL characteristic plots of device 1A8-1A11: a) Electroluminescence spectra at 8V, b) EQE-luminance characteristic, c) Current density-voltage-luminance (J-V-L), d) Current efficiency and power efficiency vs Luminance-----------------------------------------------------------55 Figure 1. 25. The EL characteristic plots of device 1A12-1A15: a) Electroluminescence spectra 8V, b) EQE-luminance characteristic, c) Current density-voltage-luminance (J-V-L) ------------57 Figure 1.26. TADF molecule and device structure------------------------------------------------------59 Figure 1. 27. The EL characteristic plots of device 1A16-1A19: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L), d) Current efficiency and Power efficiency vs Luminance------------------------------------------------------------------61 Chapter-2 Figure 2. 1. (a) A typical TADF energy diagram and (b) mechanism--------------------------------75 Figure 2. 2. Structure of TADF molecules 26DAcBPy, 25DAcBPy, and 26DPXZBPy. D-Donor and A-Acceptor-----------------------------------------------------------------------------------------------77 Figure 2. 3. (a) Calculated HOMO and LUMO of 26DAcBPy, 25DAcBPy, and 26DPXZBPy. (b) Molecule Structures------------------------------------------------------------------------------------------79 Figure 2. 4. a) Crystal structures of molecules showing the formation of CH--N hydrogen bonding (dash line). In the crystal of 25DAcBPy, two conformations co-exist (the ratio is ca 3:1 with the major one containing hydrogen bonding). b) Calculated C=O--HC hydrogen bonding distances in the crystal structures-----------------------------------------------------------------------------------------85 Figure 2. 5. Dihedral angles between the donors and the spacer phenyl unit from the crystal structures of 26DAcBPy------------------------------------------------------------------------------------86 Figure 2. 6. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of 26DAcBPy--------------------------------------------------------------------------87 Figure 2. 7. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of 25DAcBPy--------------------------------------------------------------------------87 Figure 2. 8. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of 26DPXZBPY-----------------------------------------------------------------------88 Figure 2. 9. a) UV-Vis spectra of 26DAcBPy, 25DAcBPy, and 26DPXZBPy in toluene solution (10-5 M) at RT. PL spectra of b) 26DAcBPy, c) 25DAcBPy, and d) 26DPXZBPy in various solvents (10-5 M) at RT--------------------------------------------------------------------------------------89 Figure 2. 10. PL and phosphorescence spectra of a) 26DAcBPy, b) 25DAcBPy and c) 26DPXZBPy doped in mCBP thin films (10 wt%)------------------------------------------------------91 Figure 2. 11. Cyclic voltammogram of compounds a) 26DAcBPy, b) 25DAcBPy, and c) 26DPXZBPy with tetra-butylammonium perchlorate (TBAClO4, 0.1 M) as a supporting electrolyte in DCM at 10-3 M solution and ferrocene (4.8 eV) as a reference for calibration------93 Figure 2. 12. The transient PL decay curve of a) 26DAcBPy and b) 25DAcBPy and 26DPXZBPy (10 wt% doped in mCBP thin films at 300 K). The temperature-dependent transient PL decay for c) 26DAcBPy, d) 25DAcBPy, and e) 26DPXZBPy in the thin film (10 wt% doped in mCBP) at various temperatures. (f) Prompt decay curves of emitters in the thin film (10 wt% doped in mCBP) at 300 K. (g) PL decay curve of 26DAcBPy measured in toluene (10-5 M) under vacuum--------97 Figure 2. 13. Hole transporting layer--------------------------------------------------------------------100 Figure 2. 14. Emitting layer-------------------------------------------------------------------------------100 Figure 2. 15. Electron transporting layer----------------------------------------------------------------100 Figure 2. 16. Hole blocking layer------------------------------------------------------------------------100 Figure 2. 17. The schematic diagram of the structure in this device and the energy levels of each material------------------------------------------------------------------------------------------------------101 Figure 2. 18. The EL characteristic plots of device 2A1-2A4: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L), d) Current efficiency and Power efficiency vs Luminance------------------------------------------------------------103 Figure 2. 19. The EL characteristic plots of device 2B1-2B4: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L), d) Current efficiency and Power efficiency vs Luminance------------------------------------------------------------105 Figure 2. 20. The EL characteristic plots of device 2B5 - 2B8: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L), d) Current efficiency and Power efficiency vs Luminance------------------------------------------------------------107 Figure 2. 21. The EL characteristic plots of device 2B9-2B12: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L), d) Current efficiency and Power efficiency vs Luminance----------------------------------------------------------------109 Figure 2. 22. The EL characteristic plots of device 2B13-2B16: a) Electroluminescence spectra at 8V, b) EQE-luminance characteristic, c) Current density-voltage-luminance(J-V-L), d) Current efficiency and Power efficiency vs Luminance---------------------------------------------------------111 Figure 2. 23. TADF molecule and device structure----------------------------------------------------113 Figure 2. 24. The EL characteristic plots of device 2B17 – 2B19: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L), d) Current efficiency and Power efficiency vs Luminance e) the hole and electron only devices with the configurations: ITO/NPB (20 nm)/mCBP: 26DAcBPy (10 wt%) (300 nm)/NPB (50 nm)/Al and ITO/TmPyPB (20 nm)/mCBP: 26DAcBPy (10 wt%) (300 nm)/TmPyPB (50 nm)/ LiF (1 nm)/ Al, respectively--------------------------------------------------------------------------------------------------115 Chapter-3 Figure 3. 1. Structure of TADF molecules of DMAC-BPm, DMAC-MBPm----------------------129 Figure 3. 2. (a) Molecule Structures, (b) Calculated HOMO and LUMO of DMAC-BPm, DMAC-MBPm-------------------------------------------------------------------------------------------------------130 Figure 3. 3. The crystal structure of DMAC-MBPm---------------------------------------------------134 Figure 3. 4. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of DMAc-BPm-----------------------------------------------------------------------135 Figure 3. 5. (a) The thermogravimetric thermograms (TGA) and (b) The differential scanning calorimetry (DSC) of DMAc-MBPm--------------------------------------------------------------------135 Figure 3. 6. Absorption spectra (a) and fluorescence spectra (b) of DMAC-BPm, in various solvents at RT (10-5 M) ------------------------------------------------------------------------------------136 Figure 3. 7. Absorption spectra (a) and fluorescence spectra (b) of DMAC-MBPm, in various solvents at RT (10-5 M) ------------------------------------------------------------------------------------137 Figure 3. 8. Fluorescence (Flu.) spectra of DMAC-BPm (a), and DMAC-MBPm (b) in toluene (10-5 M) solution measured at room temperature and phosphorescence (Phos.) spectra in toluene (10-5 M) measured at 77 K, respectively----------------------------------------------------------------137 Figure 3. 9. PL and phosphorescence spectra of a) DMAC-BPm, and c) DMAC-MBPm doped in DPEP0 thin films (7 wt%)---------------------------------------------------------------------------------138 Figure 3. 10. Photoelectron spectroscopy of (a) DMAC-BPm and (d) DMAC-MBPm, measured in neat films-------------------------------------------------------------------------------------------------139 Figure 3. 11. (a) Prompt decay curves of DMAC-BPm measured in the thin film (7 wt% doped in DPEPO) at 300 K. b) The transient PL decay curve of DMAC-BPm (7 wt% doped in DPEPO thin films were measured at 300 K. c) The temperature-dependent transient PL decay for DMAC-BPm-----------------------------------------------------------------------------------------------------------------142 Figure 3. 12. (a) Prompt decay curves of DMAC-MBPm measured in the thin film (7 wt% doped in DPEPO) at 300 K. b) The transient PL decay curve of DMAC-MBPm (7P wt% doped in DPEPO thin films were measured at 300 K. c) The temperature-dependent transient PL decay for DMAC-MBPm-------------------------------------------------------------------------------------------------------143 Figure 3. 13. Hole transporting layer--------------------------------------------------------------------145 Figure 3. 14. Emitting layer-------------------------------------------------------------------------------145 Figure 3. 15. Electron transporting layer----------------------------------------------------------------145 Figure 3. 16. Hole blocking layer------------------------------------------------------------------------145 Figure 3. 17. The schematic diagram of the structure in this device and the energy levels of each material------------------------------------------------------------------------------------------------------146 Figure 3. 18. The EL characteristic plots of device 3A1-3A3: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L) --------------148 Figure 3. 19. The EL characteristic plots of device 3A4-3A6: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L) --------------150 Figure 3. 20. TADF molecule and device structure----------------------------------------------------152 Figure 3. 21. The EL characteristic plots of device 3A7-3A8: a) Electroluminescence spectra at 8V, b) EQE–luminance characteristics, c) Current density–voltage–luminance (J–V–L), d) Current efficiency and Power efficiency vs Luminance----------------------------------------------------------------153

    Chapter-I
    [1] Y.-A. Ono. Electroluminescence in Encyclopedia of Applied Physics, 1st ed. VCH, Weinheim 1993.
    [2] A. Kitai, Luminescent materials and Applications. New York: John Wiley and Sons; 2008.
    [3] M. Pope, H. P. Kallmann and P. Magnante, Electroluminescence in Organic
    Crystals, J. Chem. Phys. 1963, 38, 2042.
    [4] C. W. Tang and S. A. VanSlyke, Organic electroluminescent diodes, Appl. Phys.
    Lett. 1987, 51, 913-915.
    [5] C. W. Tang, S. A. VanSlyke, and C. H. Chen, Electroluminescence of doped
    organic thin films, J. Appl. Phys. 1989, 65, 3610.
    [6] C. A. Parker, Advances in Photochemistry; Wiley & Sons, Inc.: Hoboken, NJ, 1964.

    [7] C. A. Parker, C. G. Hatchard, Triplet-singlet emission in fluid solutions; Phosphorescence of eosin. Trans. Faraday Soc. 1961, 57, 1894−1904.
    [8] A. Jablonski, Efficiency of Anti-Stokes Fluorescence in Dyes. Nature 1933, 131, 839−840.
    [9] A. Jablonski, About the mechanism of photo-luminescence of dye phosphors. Eur. Phys. J. A 1935, 94, 38−46.
    [10] G. N. Lewis; D. Lipkin; T. T. Magel, Reversible photochemical processes in rigid media. A study of the phosphorescent state. J. Am. Chem. Soc. 1941, 63, 3005−3018.
    [11] N. J. Turro, Modern Molecular Photochemistry; University Science Books: Sausalito, CA, 1978; pp98−100.
    [12] H. Uoyama, K. Goushi, K.Shizu, H. Nomura, C. Adachi. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234−238.
    [13] S. Hirata; Y. Sakai; K. Masui; H. Tanaka; S. Y. Lee; H. Nomura; N. Nakamura; M. Yasumatsu; H. Nakanotani; Q. Zhang; K. Shizu; H. Miyazaki; C. Adachi. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 2015, 14, 330−336.
    [14] Q. Zhang; B. Li; S. Huang; H. Nomura; H. Tanaka; C. Adachi, Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 2014, 8, 326−332.
    [15] N. J. Turro, Modern Molecular Photochemistry; University Science Books: Sausalito, CA, 1978; pp98−100.
    [16] J.-S. Kim; P.-K.-H. Ho; N.-C. Greenham; R.-H. Friends, J. Appl. Phys. 2000, 88, 1073-1081.
    [17] B. Valeur, M. N. Berberan-Santos, Introduction, Molecular Fluorescence: Principles and Applications, 2nd Ed. Wiley-VCH (2012) pp 01-25
    [18] Delorme.; F. Perrin, J. Phys. Rad. Ser. 1929, 10, 177.
    [19] J.-H. Huang; J.-H. Su; H. Tian, J. Mater. Chem. 2012, 22, 10977-10989.
    [20] J.-U. Wallace; S.-H. Chen, Adv. Polym. Sci. 2008, 212, 145-186.
    [21] K. Uoyama; K. Goushi; H. Shizu; Nomura; C. Adachi, Nature 2012, 492, 234.
    [22] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu and C.-H. Cheng, Nat. Photonics, 2018, 12, 235–240.
    [23] T.Takahashi,K.Shizu,T. Yasuda,K.TogashiandC.Adachi, Sci. Technol. Adv. Mater., 2014, 15, 034202.
    [24] Z. Yang, Z. Mao, Z. Xie, Y.Zhang, S. Liu, J. Zhao, J.Xu, Z. Chi and M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915–1016.
    [25] X. Cao, D. Zhang, S. Zhang, Y. Tao and W. Huang, J. Mater. Chem. C, 2017, 5, 7699–7714.
    [26] P. Rajamalli, N. Senthilkumar, P. Y. Huang, C. C. Ren-Wu, H. W. Lin and C. H. Cheng, J. Am. Chem. Soc., 2017, 139, 10948–10951.
    [27] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki and C. Adachi, J. Am. Chem. Soc., 2012, 134, 14706–14709.
    [28] C. S. Oh, D. d. S. Pereira, S. H. Han, H.-J. Park, H. F. Higginbotham, A. P. Monkman and J. Y. Lee, ACS Appl. Mater. Interfaces, 2018, 10, 35420–35429.
    [29] J. Jayakumar, T.-L. Wu, M.-J. Huang, P.-Y. Huang, T.-Y. Chou, H.-W. Lin and C.-H. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 21042–21048.
    Chapter-1
    [1] a) T. M. Figueira-Duarte, K. Muellen, Chem. Rev. 2011, 111, 7260. b) M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, Science 2011, 332, 570.
    [2] a) J. B. You, L. T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, Nat. Commun. 2013, 4, 1446. b) J. You, Z. Hong, K. Ohya, S. Ye, G. Li, Adv. Mater. 2013, 25, 3973.
    [3] E. G. Wang, W. Mammo, M. R. Andersson, Adv. Mater. 2014, 26, 1801.
    [4] a) R. Xia, W. Lai, P. A. Levermore, W. Huang, D. D. C. Bradley, Adv. Funct. Mater. 2009, 19, 2844. b) B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, D. D. C. Bradley, Nat. Mater. 2008, 7, 376.
    [5] (a) Organic Light-Emitting Devices: Synthesis Properties and Applications; K. Müllen, U. Scherf, Eds.; Wiley-VCH: Weinheim, 2006; (b) G. M. Farinola, R. Ragni, Chem. Soc. Rev. 2011, 40, 3467−3482; (c) G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, K. Leo, Adv. Mater. 2007, 19, 3672−3676; (d) H.-H. Chou, Y.-H. Chen, H.-P. Hsu, W.-H. Chang, Y.H. Chen, C.-H. Cheng, Adv. Mater. 2012, 24, 5867−5871.
    [6] a) H-H Chou and C-H Cheng, Adv. Mater. 2010, 22, 2468–2471, b) V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov, Y. Wang, Chem. Commun. 2001, 1494; c) P. Coppo, E. A. Plummer, L. De Cola, Chem. Commun. 2004, 1774;
    [7] S. Lukman, A. J. Musser, K. Chen, S. Athanasopoulos, C. K. Yong, Z. Zeng, Q. Ye, C. Chi, J. M. Hodgkiss, J. Wu, R. H. Friend, N. C. Greenham, Adv. Funct. Mater. 2015, DOI: 10.1002/adfm.201501537
    [8] a) A. Chihaya, Jpn. J. Appl. Phys. 2014, 53, 060101. b) Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931. c) Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915.
    [9] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
    [10] a) D. R. Lee, M. Kim, S. K. Jeon, S. H. Hwang, C. W. Lee, J. Y. Lee, Adv. Mater. 2015, 27, 5861. b) J. W. Sun, J. Y. Baek, K.-H. Kim, C.-K. Moon, J.-H. Lee, S.-K. Kwon, Y.-H. Kim, J.-J. Kim, Chem. Mater. 2015, 27, 6675. c) C. Mayr, S. Y. Lee, T. D. Schmidt, T. Yasuda, C. Adachi, W. Brütting, Adv. Funct. Mater. 2014, 24, 5232; d) S. Y. Lee, Y. Takuma, N. Hiroko, C. Adachi, Appl. Phys. Lett. 2012, 101, 093306.
    [11] C-Y. Chan, M. Tanaka, H. Nakanotani, C. Adachi, Nature communications (2018) 9:5036
    [12] D. R. Lee, J. M. Choi, C. W. Lee, J. Y. Lee, ACS Appl. Mater. Interfaces 2016, 8, 23190−23196
    [13] a) R. Komatsu, H. Sasabe, Y. Seino, K. Nakao, J. Kido, J. Mater. Chem. C 2016, 4, 2274. b) I. S. Park, J. Lee and T. Yasud, J. Mater. Chem. C, 2016, 4, 7911–7916.
    [14] P. Ganesan, R. Ranganathan, Y. Chi, X. K. Liu, C. S. Lee, S. H. Liu, G. H. Lee, T. C. Lin, Y. T. Chen and P. T. Chou, Chemistry, 2016, 23, 2858–2866.
    [15] T. Serevicius, T. Buciunas,J. Bucevicius, J. Dodonova, S. Tumkevicius, K. Kazlauskas and Saulius Jursenasa, J. Mater. Chem. C, 2018, 6, 11128—11136.
    [16] Q. Zhang, S. Xiang, Z. Huang, S. Sun, S. Ye, X. Lv, W. Liu, R. Guo and L. Wang, Dyes Pigm., 2018, 155, 51–58.
    [17] Q. Zhang, S. Sun, X. Lv, W. Liu, Ho. Zeng, R. Guo, S. Ye, P. Leng, S. Xiang and L. Wang, Mater. Chem. Front., 2018, 2, 2054—2062
    [18] a) P. Rajamalli, N. Senthilkumar, P. Gandeepan, P-Y. Huang, M-J. Huang, C-Z. R-Wu, C-Y. Yang, M-J. Chiu, L-K. Chu, H-W. Lin, C-H Cheng, J. Am. Chem. Soc., 2016, 138, 628. b) P. Rajamalli, N. Senthilkumar, P. Gandeepan, C-Z. R-Wu, H-W Linb, C-H Cheng, J. Mater. Chem. C, 2016, 4, 900. c) P. Rajamalli, N. Senthilkumar, P. Gandeepan, C-Z. R-Wu, H-W. Lin, C-H Cheng, ACS Appl. Mater. Interfaces, 2016, 8, 27026. d) P. Rajamalli, V. Thangraji N. Senthilkumar, P. Gandeepan, C-Z. R-Wu, H-W Linb, C-H Cheng, J. Mater. Chem. C, 2017, 5, 2919. e) P. Rajamalli, N. Senthilkumar, P.-Y. Huang, C.-C. Ren-Wu, H.-W. Lin, and C.-H. Cheng, J. Am. Chem. Soc. 2017, 139, 10948.
    [19] T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,T.Keith,R.Kobayashi,J.Normand,K.Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
    [20] P. Rajamalli, N. Senthilkumar, P. Gandeepan, P.-Y. Huang Huang, M.-J.; Ren-Wu, C.-Z.; C.-Y.Yang, M.-J. Chiu, L.-K. Chu, H.-W. Lin, C.-H. Cheng. J. Am. Chem. Soc. 2016, 138, 628-634.
    [21] a) P. Rajamalli, N. Senthilkumar, P. Gandeepan, P-Y. Huang, M-J. Huang, C-Z. R-Wu, C-Y. Yang, M-J. Chiu, L-K. Chu, H-W. Lin, C-H Cheng, J. Am. Chem. Soc., 2016, 138, 628. b) P. Rajamalli, V. Thangraji N. Senthilkumar, P. Gandeepan, C-Z. R-Wu, H-W Linb, C-H Cheng, J. Mater. Chem. C, 2017, 5, 2919.
    [22] a) Y. Hong, J. W-Y. Lam, B.-Z. Tang, Chem. Com-mun. 2009, 4332–4353. b) L. Zhua, Y. Zhao. J. Mater. Chem. C, 2013, 1, 1059–1065.
    [23] J.-J. Lin, W.-S. Liao, H.-J. Huang, F.-I Wu, C.-H. Cheng. Adv. Funct. Mater. 2008, 18, 485-491.
    [24] b) H. Shin, J.-H. Lee, C.-K. Moon, J.-S. Huh, B. Sim, J.-J. Kim. Adv. Mater. 2016, 28, 4920−4925.
    Chapter-2
    [1] G. M. Farinola and R. Ragni, Chem. Soc. Rev., 2011, 40, 3467-3482.
    [2] G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer and K. Leo, Adv. Mater., 2007, 19, 3672–3676.
    [3] H.-H. Chou, Y.-H. Chen, H.-P. Hsu, W.-H. Chang, Y.-H. Chen and C.-H. Cheng, Adv. Mater., 2012, 24, 5867–5871.
    [4] B. Minaev, G. Baryshnikov and H. Agren, Phys. Chem. Chem. Phys., 2014, 16, 1719–1758.
    [5] C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys., 2001, 90, 5048–5051.
    [6] R. Mondal, I. B. Lozada, R. L. Davis, J. A. G. Williams and D. E. Herbert, Inorg. Chem., 2018, 57, 4966–4978.
    [7] J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, D. J. Giesen, S. B. Harkins, A. J. M. Miller, S. F. Mickenberg and J. C. Peters, J. Am. Chem. Soc., 2010, 132, 9499–9508.
    [8] D. Volz, M. Wallesch, C. Fle ´chon, M. Danz, A. Verma, J. M. Navarro, D. M. Zink, S. Bra ¨se and T. Baumann, Green Chem., 2015, 17, 1988–2011.
    [9] L.-S. Cui, Y.-L. Deng, D. P.-K. Tsang, Z.-Q. Jiang, Q. Zhang, L.-S. Liao and C. Adachi, Adv. Mater., 2016, 28, 7620–7625.
    [10] M. Y. Wong and E. Zysman-Colman, Adv. Mater., 2017, 29, 1605444.
    [11] F. B. Dias, T. J. Penfold and A. P. Monkman, Methods Appl. Fluoresc., 2017, 5, 012001.
    [12] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu and C.-H. Cheng, Nat. Photonics, 2018, 12, 235–240.
    [13] T.Takahashi,K.Shizu,T. Yasuda,K.TogashiandC.Adachi, Sci. Technol. Adv. Mater., 2014, 15, 034202.
    [14] Z. Yang, Z. Mao, Z. Xie, Y.Zhang, S. Liu, J. Zhao, J.Xu, Z. Chi and M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915–1016.
    [15] X. Cao, D. Zhang, S. Zhang, Y. Tao and W. Huang, J. Mater. Chem. C, 2017, 5, 7699–7714.
    [16] P. Rajamalli, N. Senthilkumar, P. Y. Huang, C. C. Ren-Wu, H. W. Lin and C. H. Cheng, J. Am. Chem. Soc., 2017, 139, 10948–10951.
    [17] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki and C. Adachi, J. Am. Chem. Soc., 2012, 134, 14706–14709.
    [18] C. S. Oh, D. d. S. Pereira, S. H. Han, H.-J. Park, H. F. Higginbotham, A. P. Monkman and J. Y. Lee, ACS Appl. Mater. Interfaces, 2018, 10, 35420–35429.
    [19] J. Jayakumar, T.-L. Wu, M.-J. Huang, P.-Y. Huang, T.-Y. Chou, H.-W. Lin and C.-H. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 21042–21048.
    [20] I. Marghad, D. H. Kim, X. Tian, F. Mathevet, C. Gosmini, J.-C.Ribierreand, C.Adachi, ACS Omega, 2018, 3, 2254–2260.
    [21] Y. Xiang, S. Gong, Y. Zhao, X. Yin, J. Luo, K. Wu, Z.-H. Lu and C. Yang, J. Mater. Chem. C, 2016, 4, 9998–10004.
    [22] G. Xie, X. Li, D. Chen, Z. Wang, X.Cai, D. Chen, Y. Li, K. Liu, Y. Cao and S.-J. Su, Adv. Mater., 2016, 28, 181–187.
    [23] S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang and C. Adachi, Angew. Chem., Int. Ed., 2014, 53, 6402–6406.
    [24] S. Y. Lee, T. Yasuda, I. S. Park and C. Adachi, Dalton Trans., 2015, 44, 8356–8359.
    [25] Y. Xiang, Z.-L. Zhu, D. Xie, S. Gong, K. Wu, G. Xie, C.-S. Lee and C. Yang, J. Mater. Chem. C, 2018, 6, 7111–7118.
    [26] M.-D. Bai, M. Zhang, K. Wang, Y.-Z. Shi, J.-X. Chen, H. Lin, S.-L. Tao, C.-J. Zheng and X.-H. Zhang, Org. Electron., 2018, 62, 220–226.
    [27] P. Rajamalli, N. Senthilkumar, P. Gandeepan, P.-Y. Huang, M.-J. Huang, C.-Z. Ren-Wu, C.-Y. Yang, M.-J. Chiu, L.-K. Chu, H.-W. Lin and C.-H. Cheng, J. Am. Chem. Soc., 2016, 138, 628–634.
    [28] P. Rajamalli, N. Senthilkumar, P. Gandeepan, C.-Z. Ren-Wu, H.-W. Lin and C.-H. Cheng, J. Mater. Chem. C, 2016, 4, 900–904.
    [29] P. Rajamalli, V. Thangaraji, N. Senthilkumar, C.-C. Ren-Wu, H.-W. Lin and C.-H. Cheng, J. Mater. Chem. C, 2017, 5, 2919–2926
    [30] P.Rajamalli, N.Senthilkumar,P. Gandeepan,C.-C. Ren-Wu, H.-W. Lin and C.-H. Cheng, ACS Appl. Mater. Interfaces, 2016, 8, 27026–27034.
    [31] P. J. Wright, J. L. Kolanowski, W. K. Filipek, Z. Lim, E. G. Moore, S. Stagni, E. J. New and M. Massi, Eur. J. Inorg. Chem., 2017, 5260–5270.
    [32] M. J. Frisch, G. W. Trucks, H. B. Schegel, G. E. Scuseria, M. A. Robb, J. R. Cheesemen, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Lzmaylov, J. L. Sonnenberg, D. illiams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Hederson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T.Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
    [33] P. Misiak, A. T. Dubis and A. Lapinski, J. Spectrosc., 2018, 15, DOI: 10.1155/2018/1048157.
    [34] Y. Zhang, Z. Li, C. Li and Y. Wang, Front. Chem., 2019, 7, 302.
    [35] F. Ma, Y. Cheng, X. Zhang, X. Gu, Y. Zheng, K. Hasrat and Z. Qi, Dyes Pigm., 2019, 166, 245–253.
    [36] X.-K. Chen, Y. Tsuchiya, Y. Ishikawa, C. Zhong, C. Adachi and J.-L. Bre ´das, Adv. Mater., 2017, 29, 1702767.
    [37] V. Thangaraji, P. Rajamalli, J. Jayakumar, M.-J. Huang, Y.-W. Chen and C.-H. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 17128–17133.
    [38] Y. Olivier, M. Moral, L. Muccioli and J.-C. Sancho-Garcı ´a, J. Mater. Chem. C, 2017, 5, 5718–5729.
    [39] T.-L. Wu, S.-H. Lo, Y.-C. Chang, M.-J. Huang and C.-H. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 10768–10776.
    [40] K. Guo, H. Wang, Z. Wang, C. Si, C. Peng, G. Chen, J. Zhang, G. Wang and B. Wei, Chem. Sci., 2017, 8, 1259–1268.
    [41] F. Ni, Z. Zhu, X. Tong, M. Xie, Q. Zhao, C. Zhong, Y. Zou and C. Yang, Chem. Sci., 2018, 9, 6150–6155.
    [42] S. Kothavale, K. H. Lee and J. Y. Lee, ACS Appl. Mater. Interfaces, 2019, 11, 17583–17591.
    [43] W.-L. Tsai, M.-H. Huang, W.-K. Lee, Y.-J. Hsu, K.-C. Pan, Y.-H. Huang, H.-C. Ting, M. Sarma, Y.-Y. Ho, H.-C. Hu, C.-C. Chen, M.-T. Lee, K.-T. Wong and C.-C. Wu, Chem. Commun., 2015, 51, 13662–13665.
    [44] Z. Chen, Z. Wu, F. Ni, C. Zhong, W. Zeng, D. Wei, K. An, D. Ma and C. Yang, J. Mater. Chem. C, 2018, 6, 6543–6548.
    [45] A.Tomkeviciene, T. , M.Guzauskas, V. Andruleviciene, D. Volyniuk and J. V. Grazulevicius, Org. Electron., 2019, 70, 227–239.
    [46] C. Duan, J. Li, C. Han, D. Ding, H. Yang, Y. Wei and H. Xu, Chem. Mater., 2016, 28, 5667–5679.
    [47] J.-J. Lin, W.-S. Liao, H.-J. Huang, F.-I Wu, C.-H. Cheng. Adv. Funct. Mater. 2008, 18, 485-491.
    [48] S. Kothavale, K. H. Lee and J. Y. Lee, ACS Appl. Mater. Interfaces, 2019, 11, 17583-17591.
    [49] S. Gan, S. Hu, X.-L. Li, J. Zeng, D. Zhang, T. Huang, W. Luo, Z. Zhao, L. Duan, S.-J. Su and B. Z. Tang, ACS Appl Mater Interfaces, 2018, 10, 17327-17334.
    Chapter-3
    [1] Organic Light-Emitting Devices: Synthesis Properties and Applications; Müllen, K., Scherf, U., Eds.; Wiley-VCH: Weinheim, 2006.
    [2] Farinola, G. M.; Ragni, R. Chem. Soc. Rev. 2011, 40, 3467.
    [3] (a) Schwartz, G.; Pfeiffer, M.; Reineke, S.; Walzer, K.; Leo, K. Adv. Mater. 2007, 19, 3672. (b) Chou, H.-H.; Chen, Y.-H.; Hsu, H.-P.; Chang, W.-H.; Chen, Y.H.; Cheng, C.-H. Adv. Mater. 2012, 24, 5867.
    [4] B. Minaev, G. Baryshnikov, H. Agren; Phys. Chem. Chem. Phys. 2014, 16, 1719.
    [5] C.-H. Fan, P. Sun, T.-H. Su, C.-H. Cheng; Adv. Mater. 2011, 23, 2981.
    [6] P. Tao, W-L. Li, J. Zhang, S. Guo, Q. Zhao, H. Wang, B. Wei, S-J. Liu, X-H. Zhou, Q. Yu, B-S. Xu, W. Huang; Adv. Funct. Mater. 2016, 26, 881.
    [7] (a) M. Numata, T. Yasuda and C. Adachi; Chem. Commun., 2015, 51, 9443--9446. (b) Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang; Adv. Mater. 2014, 26, 7931.
    [8] T. Takahashi, K. Shizu, T. Yasuda, K. Togashi, C. Adachi, Sci. Technol. Adv. Mater. 2016, 15, 034202;
    [9] W. J. Park, Y. Lee, J. Y. Kim, D. W. Yoon, J. Kim, S. H. Chae, H. Kim, G. Lee, S. Shim, J. H. Yang, S. J. Lee, Synth. Met. 2015, 209, 99;
    [10] T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777;
    [11] (a) T. Nakagawa, S. Y. Ku, K. T. Wong, C. Adachi, Chem. Commun. 2012, 48, 9580; (b) M. Y. Wong, E. Zysman-Colman; Adv. Mater. 2017, 1605444.
    [12] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234
    [13] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134, 14706;
    [14] M. Kim, J. Min Choi, J. Y. Lee; Chem. Commun., 2016, 52, 10032
    [15] P. Ganesan, R. Ranganathan, Y. Chi, X.-K. Liu, C.-S. Lee, S.-H. Liu, G.-H. Lee, T.-C. Lin, Y.-T. Chen, P.-T. Chou, Chem. Eur. J. 2017, 23, 2858.
    [16] R. Komatsu, H. Sasabe, Y. Seino, K. Nakao, J. Kido, J. Mater. Chem. C 2016, 4, 2274.
    [17] M. J. Frisch, G. W. Trucks, H. B. Schegel, G. E. Scuseria, M. A. Robb, J. R. Cheesemen, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Lzmaylov, J. L. Sonnenberg, D. illiams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Hederson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,T.Keith,R.Kobayashi,J.Normand,K.Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
    [18] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. ACS Appl. Mater. Interfaces 2016, 8, 27026−27034.
    [19] Rajamalli, P.; Thangaraji, V.; Senthilkumar, N.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C. H. J. Mater. Chem. C, 2017, 5, 2919−2926.
    [20] Sun, J. W.; Kim, K.-H.; Moon, C.-K.; Lee, J.-H.; Kim, J.-J. Highly Efficient Sky-Blue Fluorescent Organic Light Emitting Diode Based on Mixed Cohost System for Thermally Activated Delayed Fluorescence Emitter (2CzPN). ACS Appl. Mater. Interfaces 2016, 8, 9806−9810.
    [21] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H. A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. J. Am. Chem. Soc. 2016, 138, 628− 634.
    [22] Lin, J.-J.; Liao, W.-S.; Huang, H.-J.; Wu, F.-I.; Cheng, C.-H. Adv. Funct. Mater. 2008, 18, 485-491.
    [23] Rajamalli, P.; Senthilkumar, N.; Huang, P.-Y.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. J. Am. Chem. Soc. 2017, 139, 10948−10951
    [24] S. Kothavale, K. H. Lee and J. Y. Lee, ACS Appl. Mater. Interfaces, 2019, 11, 17583-17591.

    QR CODE