簡易檢索 / 詳目顯示

研究生: 李岳峯
Lee, Yueh-Feng
論文名稱: 使用主動Q-調制環型共振雷射於以光時域反射儀為架構之光纖入侵感測系統
Distributed Fiber-Optic OTDR-Based Intrusion Sensor System Using Actively Q-Switched Ring Laser
指導教授: 王立康
Wang, Li-Karn
口試委員: 馮開明
劉文豐
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 50
中文關鍵詞: 入侵光時域反射儀Q調制馬克詹德干涉儀
外文關鍵詞: intrusion, opticaltimedomainreflectometer, qswitch, mach-zehnderinterfermeter
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用實驗室自製馬克詹德干涉儀搭配環形共振腔產生的脈衝打進八點八公里的長光纖,來測量背向雷利散射。由於馬克詹德干涉儀會因為光纖震動所產失的相位變化發生建設性干涉或破壞性干涉,就可以利用此機制來產生脈衝。當產生破壞性干涉時,共振腔裡無能量產生。當為建設性干涉時,共振腔裡有極高的能量,就會形成脈衝。而我們將此脈衝打入感測光纖裡,來產生背向的雷利散射。雷利散射也會因為光纖的震動或是拍擊所產生的相位變化而有能量強度的高低變化。利用此散射的強度變化,我們可以來推測出光纖中的扭曲抑或是經由入侵引起之相位變化造成的干涉,即可反推出入侵訊號在光纖中的位置,以此來達到防區的效果。


    In this paper, we use a pulse laser, formed by incorporating a Mach-Zehnder interferometer in a ring resonator of a fiber laser, and launch the pulse into an 8.8 kilometer bare fiber, to detect backward Rayleigh scattering. The Mach-Zehnder interferometer is very sensitive to the phase difference caused by the perturbation on the fiber. So when it is destructive interference, it means there is no power in the cavity. On the contrary, there will be lots of energy when constructive interference occurs. Backward Rayleigh scattering is also sensitive to the phase difference caused by the perturbation on the fiber. So it means that when there is a phase difference caused by the perturbation on the fiber, the power of backward Rayleigh scattering would change. We can then determine whether the fiber is bent or vibrated by inspecting the power variation of the backward Rayleigh scattering. So this system can be used for security of perimeter zones.

    第一章 序論 1 1.1 研究背景 1 1.2 研究目的與動機 2 1.3 文獻回顧 3 1.3.1 同調耦合之Q-調制光纖雷射 3 1.3.2 以干涉儀進行Q-調制之系統 4 1.3.3 分析與設計利用雙臂干涉儀製作高輸出光纖雷射 5 1.3.4 光時域反射儀(Optical time domain reflectometer, OTDR) 6 1.3.5 拉曼光時域反射系統 7 1.4 論文架構 8 第二章 原理與介紹 9 2.1 光纖(Optical fiber) 9 2.2 光纖耦合器(Fiber coupler) 10 2.3 光纖循環器(Fiber circulator) 11 2.4 極化控制器(Polarization controller) 12 2.5 摻鉺光纖以及摻鉺光纖放大器(EDF and EDFA) 13 2.6 雷射共振腔(Laser cavity) 15 2.7 馬克詹德干涉儀(Mach-Zehnder Interferometer) 16 2.8 雷利散射(Rayleigh scattering) 18 2.9 干涉儀Q-調製雷射 20 第三章 實驗架構 21 3.1 環形共振腔雷射光源 21 3.2 訊號產生器驅動PZT產生脈衝 22 3.3 脈衝雷射進入OTDR系統 24 3.4 入侵位置推算法 25 第四章 實驗結果與分析 28 4.1 光源量測 28 4.1.1 泵激光源與雷射之關係 28 4.1.2 脈衝的基本數值 32 4.2 模擬入侵結果 35 第五章 結論與未來方向 43 5.1 結論 43 5.2 未來方向 44 參考文獻 45

    [1] Gloge D, Optical fiber theory: Opportunities for advancement abound, Radio Science, 12(4), pp.479-490, 1997.
    [2] Okoshi T, “Recent advances in coherent optical fiber communication systems,” Journal of Lightwave Technology, 5(1), pp.44-52, 1987.
    [3] Saravanos, C., and Lowe, R. S, “Characterization techniques of single-mode fibers,” IEEE, pp.1-6, 1988.
    [4] S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  m using solid-state lasers,” IEEE Trans. Geosci. Remote Sens, 31, pp.4–15, 1993.
    [5] Patrick, H. J., Williams, G. M., Kersey, A. D., Pedrazzani, J. R., and Vengsarkar, A. M, “ Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technology Letter, 8(9), pp.1223-1225, 1996.
    [6] Park, S. J., Ta, C. L., Baek, H. G., Kim, Y. H., Eom, J. B., Lee, Y. T., and Lee, B. H , “Optical fiber sensor for refractive index measurement based on localized surface plasmon resonance,” Conference on Lasers and Electro-Optics/Pacific Rim, Optical Society of America, 2013.
    [7] Mahmud, Z., Herman, S. H., Noor, U. M., and Saharudin, S , “Performance characterization of optical fiber oxygen sensor in gas and aqueous phase,” IEEE, 2013.

    [8] Wang, Z.N., Li, J., Fan, M.Q., Zhang, L., Peng, F., Wu, H., Zeng, J.J., Zhou, Y., and Rao, Y.J, “Phase-sensitive optical time-domain reflectometry with Brillouin amplification,” Optics Letters, 39, pp.4313–4316, 2014.
    [9] Mao, P., Luo, Y., Chen, X., Fang, J., Huang, H., Chen, C. and Chen, Z, “Design and optimization of multimode fiber sensor based on surface plasmon resonance,” IEEE, 21, 2014.
    [10] Hugo, F.M.; Sonia, M.L.; Pedro, C.; Massimo, L.F.; Orlando, F.; Miguel, and G.H, “ Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over > 100 km,” J. Lightwave Technology, 32, pp.1510–1518, 2014.
    [11] Wang, Z., Zeng, J., Li, J., Peng, F., Zhang, L., Zhou, Y., Wu, H., and Rao, Y, “175 km phase-sensitive OTDR with hybrid distributed amplification,” In Proceedings of the 23rd International Conference on Optical Fiber Sensors, 2014.
    [12] Hugo, F.M., Sonia, M.L., Pedro, C., Massimo, L.F., Orlando, F., and Miguel, G.H, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over > 100 km,” J. Lightwave Technology, 32, pp.1510–1518, 2014.
    [13] P. Perez-Millan, A. Diez, M. V. Andres, D. Zalvidea, and R.Duchowicz, “Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating,” Optics Express, 13, pp.5046–5051, 2005.
    [14] K. Kieu and M. Mansuripur, “Active Q-switching of a fiber laser with a microsphere resonator,” Optics Letters, 31, pp.3568–3570, 2006.

    [15] M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact single frequency all fiber Q-switched laser at 1 μm,” Optics Letters, 32, pp.897–899, 2007.
    [16] D. Sabourdy, A. Desfarges-Berthelemot, V. Kerme`ne, and A. Barthe´le´my, “Coherent combining of Q-switched fibre lasers,” IEEE, 40(20), pp.1254-1255, 2004.
    [17] Zhang, S. M., Lu, F. Y., and Wang. J, “All fiber actively Q-switched Er3+/Yb3+ co‐doped ring laser,” Microwave and Optical Technology Letters, 49(9), pp.2183-2186, 2007.
    [18] A Nassiri, H Idrissi-Saba, and A Boulezhar, “ Analysis and design of high output power from a two-arm coherently combined Q-switched fiber laser,” IEEE, 28, 2017.
    [19] Juarez, J. C., Maier, E. W., Kyoo, N. C. and Taylor, H. F, “Distributed fibre-optic intrusion sensor system,” J. Lightwave Technology, 23, pp.2081–2087, 2005.
    [20] Signorini, A., Faralli, S., Soto, M. A., Sacchi, G., Baronti, F., Barsacchi, R., and Di Pasquale, F, “40 km long-range Raman-based distributed temperature sensor with meter-scale spatial resolution,” In Optical Fiber Communication Conference, Optical Society of America, 2010.
    [21] Onstott, J. R., Messerly, M. J., Mikkelson, R. C., and Donalds, L. J. U.S. Patent No. 4,896,942. Washington, DC: U.S. Patent and Trademark Office, 1990.
    [22] Kawasaki, B. S., Hill, K. O., and Lamont, R. G, “Biconical-taper single-mode fiber coupler,” Optics Letters, 6(7), pp.327-328, 1981.

    [23] Georgiou, G., and Boucouvalas, A. C, “Low-loss single-mode optical couplers,” IEE Proceedings J (Optoelectronics), 132(5), pp.297-302, 1985.
    [24] William L, and Emkey, “A Polarization-Independent Optical Circulator for 1.3 pm,” Journal of Lightwave Technology, LT-1(3), 1983.
    [25] Nigel G. Walker and Graham R. Walker, “Polarization Control for Coherent Communications,” Journal of Lightwave Technology, 8(3), pp.438-458, 1990.
    [26] Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu,D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A.Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE, Journal of Selected Topics in Quantum Electronics, 13, pp.573–579, 2007.
    [27] M. A. Jebali, J.-N. Maran, S. LaRochelle, S. Chatigny, M.-A. Lapointe, and E. Gagnon, “A 103 W high efficiency in-band cladding pumped 1593 nm all fiber erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest, 50(3), 2012.
    [28] E. Lim, S. Alam, and D. J. Richardson, “Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers,” Optics Express, 20, pp.13886–13895, 2012.
    [29] H. Ono, M. Yamada, T. Kanamori, S. Sudo and Y. Ohishi, "1.58-μm band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems," IEEE, Journal of Lightwave Technology, 17(3), pp. 490-496, 1999.
    [30] Y. Sun, J. L. Zyskind, and A. K. Srivastava, "Average inversion level, modeling, and physics of erbium-doped fiber amplifiers," Journal of Selected Topics in Quantum Electronics, 3(4), pp.991-1007, 1997.
    [31] G. P. Agrawal, Fiber-optic communication systems. Vol. 222. John Wiley and Sons, 2012.
    [32] A. Bjarklev ,Optical fiber amplifiers: Design and system applications. Artech House, Inc., 1993.
    [33] Ball, G. A., and Glenn, W. H, “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors,” Journal of Lightwave Technology, 10(10), pp.1338-1343, 1992.
    [34] Tamura, K., Ippen, E. P., Haus, H. A., and Nelson, L. E, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Optics Letters, 18(13), pp.1080-1082, 1993.
    [35] K. P. Zetie, S. F. Adams, and R. M. Tocknell, “How does a Mach-Zehnder interferometer work,” Physics Education, 35(1), pp.46, 2000.
    [36] S. C. Her and C. M. Yang, “Dynamic strain measured by Mach-Zehnder interferometric optical fiber sensors,” Sensors, 12(3), pp.3314-3326, 2012.
    [37] https://dru5cjyjifvrg.cloudfront.net/wp-content/uploads/2013/11/BPM-Mach-Zehnder-interferometer.jpg
    [38] K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE, Journal of Quantum Electronics, 17(6), pp.862-868, 1981.
    [39] P. Healey, “OTDR in monomode fibres at 1.3 Âm using a semiconductor laser,” Electronics Letters, 1981.
    [40] https://en.wikipedia.org/wiki/Rayleigh_scattering

    [41] J. C. Palais, Fiber Optic Communications. Upper Saddle River, NJ: Prentice Hall, 1998.
    [42] Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technology, 27, pp.3243–3249, 2010.
    [43] Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technology Letter, 24(7), pp.542–544, 2012.

    QR CODE