簡易檢索 / 詳目顯示

研究生: 孫毓安
Sun, Yu-An
論文名稱: 運用氣溶膠技術於能源科技之環境監控與材料製程
Aerosol Technology for Environmental Monitoring and Synthesis of Energy Material
指導教授: 蔡德豪
Tsai, De Hao
口試委員: 汪上曉
Wong, David Shan-Hill
呂世源
Lu, Shih-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 氣溶膠環境監控FTIR即時分析錳氧化物奈米粒子超級電容器
外文關鍵詞: aerosol, environmental monitoring, in-situ FTIR analysis, silver, manganese oxide, nanoparticle, supercpacitor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用氣溶膠科技應用於能源領域中的兩大部分,一部分對化石燃料燃燒發電技術所生成之氣溶膠作環境監控(針對有害的氣溶膠);另一部分則是用氣溶膠合成法製備能源材料(針對好的氣溶膠)。在第一部分中,我們結合DMA (氣相奈米粒子流動分析儀)及FTIR(傅立葉紅外光譜儀),建立一創新氣相即時定量分析方式。選用的測試材料有蔗糖及二氧化矽奈米粒子。實驗結果顯示,此方法對於定量分析煙道氣中汙染性的氣溶膠的粒徑分佈、數量及質量濃度是非常有用的。從測量蔗糖及二氧化矽的結果可以得知三個結論。一、前驅物濃度越高,其霧化產生的氣溶膠經DMA獲得之粒子質量濃度越高,呈線性關係。二、前驅物濃度越高,其霧化產生的氣溶膠經FTIR定量分析獲得之官能基峰值面積越高,呈線性關係,並可DMA及FTIR之定量結果獲得一結合的檢量線,作為對照。在第二部分中,我們利用運用氣溶膠合成法製造銀–錳氧化物(Ag-MnOx)和添加十六烷基三甲基溴化銨(CTAB)為模板之銀–錳氧化物(c-Ag-MnOx)奈米複合結構作為超級電容器(SCs)的正極材料。通過氣相蒸發誘導自組裝的方法,銀奈米粒子(Ag NPs)均勻地裝飾在MnOx 奈米粒子團簇的表面上。當Ag前驅物濃度為0.5 wt%時獲得最佳比電容值:Ag-MnOx為118 F g-1,c-Ag-MnOx為154 F g-1在1 A g-1電流密度下。複合奈米材料超級電容性能的增加可以歸因於(1)透過摻雜Ag NP改善了材料的導電度,和(2)透過使用CTAB模板提升了材料的比表面積。本研究中演示的雛型方法是未來製造各種以錳氧化物為基
    底的複合奈米結構作為超級電容器電極材料極有潛力的技術。


    We demonstrate a systematic study of using aerosol technology in environment monitoring of pollutant aerosol (i.e., “bad” aerosol) and aerosol-based synthesis of energy material (i.e., “good” aerosol). In the first part, we establish a new gas phase in-situ quantitative analytical method, which combines Fourier transform infrared spectrometry (FTIR) and differential mobility analysis (DMA). Sucrose and silica nanoparticle are chosen as the test aerosol materials. The results show that metrology and methodology developed in this study are useful for the characterization of particle size, size distribution, and number and mass concentrations of aerosols on a quantitative basis. The precursor concentration is directly proportionally to total particle mass concentration (by DMA) and the absorption peak area of a specific functional group (by FTIR). We can further collect these two quantitative results to create a combined calibration line for two selected materials. In the second part, A facile, prototype aerosol-based synthetic approach is demonstrated for the fabrication of silver-manganese oxide (Ag-MnOx) and cetyltrimethylammonium bromide (CTAB)-templated silver-manganese oxide (c-Ag-MnOx) hybrid nanostructures as the positive electrode materials of supercapacitors (SCs). Through gas-phase evaporation-induced self-assembly, silver nanoparticles (Ag NPs) are homogeneously decorated on the surface of MnOx NP clusters. An optimal specific capacitance is obtained when the concentration of silver precursor is 0.5 wt%: 118 F g-1 for Ag-MnOx and 154 F g-1 for c-Ag-MnOx at 1 A g-1. The enhanced supercapacitive performance of the hybrid NPs is attributed to (1) the improved electrical conductivity by the incorporation with Ag NPs, and (2) the increased specific surface area by the usage of the CTAB template. The prototype method demonstrated in this study shows a promise for the fabrication of a variety of manganese oxide-based hybrid nanostructures as electrode materials for supercapacitor applications.

    摘要..............................I Abstract.........................II 總目錄...........................III 圖目錄............................V 表目錄...........................VII 第一章 緒論.......................1 1.1 能源發展概述..................2 1.2 氣溶膠技術於能源與環境科技的應用.2 1.3 氣溶膠合成法..................4 1.4 超級電容器....................7 1.4.1超級電容器簡介................7 1.4.2超級電容器能量儲存機制.........7 1.5 錳氧化物(MnOx)奈米材料........9 1.5.1 MnOx奈米材料簡介.............9 1.5.2 影響MnOx材料電容表現之因素..9 1.6 研究動機.....................11 第二章 實驗方法...................13 2.1 實驗藥品.....................13 2.2 實驗儀器.....................14 2.2.1 氣霧化奈米粒子之合成系統....15 2.2.2 氣相奈米粒子流動分析儀(DMA).16 2.2.3 傅立葉紅外光譜儀(FTIR)....17 2.2.4 比表面與孔隙度分析儀(BET).18 2.2.5 熱重量分析儀(TGA)........19 2.2.6 X光繞射儀(XRD)..........20 2.2.7 掃描式電子顯微鏡(SEM)....21 2.3 實驗步驟.................... 22 2.3.1 即時氣溶膠粒徑分析........ 22 2.3.2 即時氣溶膠紅外光譜分析.....25 2.3.3 以氣溶膠合成法製備Ag-MnOx 複合奈米結構.27 2.3.4 電極製備..................29 2.3.5 電化學量測..................30 第三章 結果與討論................32 3.1 即時氣溶膠粒徑及紅外光譜分析..32 3.1.1 蔗糖奈米粒子即時粒徑分析..32 3.1.2 蔗糖奈米粒子即時紅外光譜分析.34 3.1.3 二氧化矽奈米粒子即時粒徑分析.37 3.1.4 二氧化矽奈米粒子即時紅外光譜分析.39 3.2 以氣溶膠合成法製備Ag-MnOx奈米複合結構應用於超級電容器正極材料.42 3.2.1 Ag-MnOx奈米複合結構材料分析.42 3.2.2 添加CTAB為模板之Ag-MnOx奈米複合結構(c-Ag-MnOx)材料 分析....................45 3.2.3 Ag-MnOx電化學分析..........47 3.2.4 c-Ag-MnOx電化學分析........51 第四章 結論.....................55 第五章 未來工作..................56 參考文獻..........................57

    [1] U.S. Energy Information Administration. EIA projects 28% increase in world energy use by 2040., (2017).
    [2] C.-H. Cheng, Effect of Aerosol on MEA Slip in Capturing Carbon Dioxide, in, 2018.
    [3] Y.-F. Lu, F.-C. Chou, F.-C. Lee, C.-Y. Lin, D.-H. Tsai, Synergistic Catalysis of Methane Combustion Using Cu–Ce–O Hybrid Nanoparticles with High Activity and Operation Stability, The Journal of Physical Chemistry C, 120 (2016) 27389-27398.
    [4] T.-Y. Liang, C.-Y. Lin, F.-C. Chou, M. Wang, D.-H. Tsai, Gas-Phase Synthesis of Ni–CeOx Hybrid Nanoparticles and Their Synergistic Catalysis for Simultaneous Reforming of Methane and Carbon Dioxide to Syngas, The Journal of Physical Chemistry C, 122 (2018) 11789-11798.
    [5] X. Fan, T. Yu, Y. Wang, J. Zheng, L. Gao, Z. Li, J. Ye, Z. Zou, Role of phosphorus in synthesis of phosphated mesoporous TiO2 photocatalytic materials by EISA method, Applied Surface Science, 254 (2008) 5191-5198.
    [6] T.Y. Tsai, H.L. Wang, Y.C. Chen, W.C. Chang, J.W. Chang, S.Y. Lu, D.H. Tsai, Noble metal-titania hybrid nanoparticle clusters and the interaction to proteins for photo-catalysis in aqueous environments, J Colloid Interface Sci, 490 (2017) 802-811.
    [7] L.T. Chen, U.H. Liao, J.W. Chang, S.Y. Lu, D.H. Tsai, Aerosol-Based Self-Assembly of a Ag-ZnO Hybrid Nanoparticle Cluster with Mechanistic Understanding for Enhanced Photocatalysis, Langmuir, 34 (2018) 5030-5039.
    [8] P. Nie, G. Xu, J. Jiang, H. Dou, Y. Wu, Y. Zhang, J. Wang, M. Shi, R. Fu, X. Zhang, Aerosol-Spray Pyrolysis toward Preparation of Nanostructured Materials for Batteries and Supercapacitors, Small Methods, 2 (2018).
    [9] S.-Y. Hsu, S.-C. Lin, J.-A. Wang, C.-C. Hu, C.-C.M. Ma, D.-H. Tsai, Aerosol-based synthesis of silsesquioxane-graphene oxide and graphene-manganese oxide nanocomposites for high-performance asymmetric supercapacitors, Electrochimica Acta, 296 (2019) 427-437.
    [10] T. Kim, G. Jung, S. Yoo, K.S. Suh, R.S.J.A.n. Ruoff, Activated graphene-based carbons as supercapacitor electrodes with macro-and mesopores, 7 (2013) 6899-6905.
    [11] T. Karhunen, On Gas-Phase Synthesis of Nanoparticles For Advanced Energy Solutions, in: Report Series in Aerosol Science, 2016.
    [12] K. Okuyama, I. Wuled Lenggoro, Preparation of nanoparticles via spray route, Chemical Engineering Science, 58 (2003) 537-547.
    [13] R.M. Eninger, C.J. Hogan Jr, P. Biswas, A. Adhikari, T. Reponen, S.A.J.A.S. Grinshpun, Technology, Electrospray versus nebulization for aerosolization and filter testing with bacteriophage particles, 43 (2009) 298-304.
    [14] Y. Lu, H. Fan, A. Stump, T.L. Ward, T. Rieker, C.J.J.N. Brinker, Aerosol-assisted self-assembly of mesostructured spherical nanoparticles, 398 (1999) 223.
    [15] J.S. Cho, J.C. Lee, S.H. Rhee, Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104 (2016) 422-430.
    [16] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Advanced Powder Technology, 22 (2011) 1-19.
    [17] D.A. Firmansyah, S.-G. Kim, K.-S. Lee, R. Zahaf, Y.H. Kim, D.J.L. Lee, Microstructure-Controlled Aerosol–Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres, Langmuir, 28 (2012) 2890-2896.
    [18] H. Chang, H.D. Jang, Controlled synthesis of porous particles via aerosol processing and their applications, Advanced Powder Technology, 25 (2014) 32-42.
    [19] H.D. Abruña, Y. Kiya, J.C. Henderson, Batteries and electrochemical capacitors, Phys. Today, 61 (2008) 43-47.
    [20] C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor, Journal of the American Chemical Society, 130 (2008) 2730-2731.
    [21] V. Fthenakis, H.C. Kim, Land use and electricity generation: A life-cycle analysis, Renewable and Sustainable Energy Reviews, 13 (2009) 1465-1474.
    [22] B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging, Nature, 458 (2009) 190.
    [23] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem Soc Rev, 41 (2012) 797-828.
    [24] S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, The Journal of Physical Chemistry C, 112 (2008) 4406-4417.
    [25] Y. Wang, I. Zhitomirsky, Cathodic electrodeposition of Ag-doped manganese dioxide films for electrodes of electrochemical supercapacitors, Materials Letters, 65 (2011) 1759-1761.
    [26] A.T. Chidembo, S.H. Aboutalebi, K. Konstantinov, C.J. Jafta, H.K. Liu, K.I.J.R.A. Ozoemena, In situ engineering of urchin-like reduced graphene oxide–Mn 2 O 3–Mn 3 O 4 nanostructures for supercapacitors, RSC Advances, 4 (2014) 886-892.
    [27] T.-T. Liu, G.-J. Shao, M.-T. Ji, Z.-P. Ma, Research Progress in Nano-Structured MnO2 as Electrode Materials for Supercapacitors, Asian Journal of Chemistry, 25 (2013) 7065-7070.
    [28] M. Dong, Y.X. Zhang, H.F. Song, X. Qiu, X.D. Hao, C.P. Liu, Y. Yuan, X.L. Li, J.M. Huang, Self-assembled spongy-like MnO2 electrode materials for supercapacitors, Physica E: Low-dimensional Systems and Nanostructures, 45 (2012) 103-108.
    [29] G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping, Nano Lett, 11 (2011) 4438-4442.
    [30] S.H. Choi, Y.C. Kang, Polystyrene-Templated Aerosol Synthesis of MoS2 -Amorphous Carbon Composite with Open Macropores as Battery Electrode, ChemSusChem, 8 (2015) 2260-2267.
    [31] M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO2-based nanostructures for high-performance supercapacitors, Journal of Materials Chemistry A, 3 (2015) 21380-21423.
    [32] A.P. Lab, Differential Mobility Particle Sizer (Aerosol measurements), in: Institute for Atmospheric and Climate Science, Switzerland., 2014.
    [33] S. Guha, M. Li, M.J. Tarlov, M.R.J.T.i.b. Zachariah, Electrospray–differential mobility analysis of bionanoparticles, 30 (2012) 291-300.
    [34] A.W. Coats, J.P. Redfern, Thermogravimetric analysis. A review, The Analyst, 88 (1963).
    [35] D.H. Tsai, S.H. Kim, T.D. Corrigan, R.J. Phaneuf, M.R. Zachariah, Electrostatic-directed deposition of nanoparticles on a field generating substrate, Nanotechnology, 16 (2005) 1856-1862.
    [36] A.f. http://www2.ups.edu/faculty/hanson/Spectroscopy/IR/IRfrequencies.html., Characteristic IR Absorption Frequencies of Organic Functional Groups in.
    [37] B.C. Smith, An IR Spectral Interpretation Potpourri: Carbohydrates and Alkynes, Spectroscopy, Volume 32, Issue 7, pg 18–24 (2017).
    [38] T. Lagstrom, T.A. Gmur, L. Quaroni, A. Goel, M.A. Brown, Surface vibrational structure of colloidal silica and its direct correlation with surface charge density, Langmuir, 31 (2015) 3621-3626.
    [39] F.H. Teherani, D.C. Look, D.J. Rogers, Q. Sun, T.L. Leung, K.C. Sing, A.B. Djurišić, M.H. Xie, A.M.C. Ng, H. Li, K. Shih, Cycling performance of Mn2O3 porous nanocubes and hollow spheres for lithium-ion batteries, in: Oxide-based Materials and Devices VIII, 2017.
    [40] J. Guo, Q. Liu, C. Wang, M.R. Zachariah, Interdispersed amorphous MnOx–carbon nanocomposites with superior electrochemical performance as lithium‐storage material, Advanced Functional Materials, 22 (2012) 803-811.
    [41] Z. Hu, D. Chen, J. Dong, Q. Li, Z. Chen, D. Yin, B. Zhao, C.L. Wu, C.-H. Shek, Facile synthesis of hierarchical Mn3O4 superstructures and efficient catalytic performance, Physical Chemistry Chemical Physics, 18 (2016) 26602-26608.
    [42] K. Shameli, M.B. Ahmad, A. Zamanian, P. Sangpour, P. Shabanzadeh, Y. Abdollahi, M. Zargar, Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder, Int J Nanomedicine, 7 (2012) 5603-5610.
    [43] P.-Y. Chen, A. Adomkevicius, Y.-T. Lu, S.-C. Lin, Y.-H. Tu, C.-C. Hu, The Ultrahigh-Rate Performance of Alkali Ion-Pre-Intercalated Manganese Oxides in Aqueous Li2SO4, Na2SO4, K2SO4 and MgSO4 Electrolytes, Journal of The Electrochemical Society, 166 (2019) A1875-A1883.
    [44] H.L. Shuli Yan, and Bin Liang*, Supported CaO Catalysts Used in the Transesterification of Rapeseed Oil for the Purpose of Biodiesel Production, Energy & Fuels, 22, 646–651 (2008).
    [45] M.C.G. Albuquerque, I. Jiménez-Urbistondo, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, E. Rodríguez-Castellón, A. Jiménez-López, D.C.S. Azevedo, C.L. Cavalcante Jr, P. Maireles-Torres, CaO supported on mesoporous silicas as basic catalysts for transesterification reactions, Applied Catalysis A: General, 334 (2008) 35-43.
    [46] W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem Soc Rev, 40 (2011) 1697-1721.
    [47] T.-T. Liu, G.-j. Shao, M.-t. Ji, Z.-P.J.A.J.o.C. Ma, Research Progress in Nano-Structured MnO2 as Electrode Materials for Supercapacitors, 25 (2013).

    QR CODE