研究生: |
許雅娟 Shu Ya-Chuan |
---|---|
論文名稱: |
以UV及x光激發攙有三氧化二鐿(Yb2O3)或三氧化二鏀(Lu2O3)雜質的二氧化鋯(ZrO2)材料發光現象的研究 Studies on X-ray Induced Luminescence Behavior of Zirconia Doped withYb2O3 and Lu2O3 |
指導教授: |
朱鐵吉
Chu Tieh-Chi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 發光 、熱發光 、光發光 |
外文關鍵詞: | Luminescence, Thermoluminescence, Photoluminescence |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文研究的主題是探討二氧化鋯(ZrO2)主材料中攙有Yb2O3及Lu2O3的雜質後,經UV和軟x光的照射後由熱引發發光及x光激發引發發光的現象。
樣品藉由x光繞射實驗結果得知,主材料ZrO2為較不對稱的單斜體結構。而攙入不同莫耳分率濃度Yb2O3或Lu2O3雜質的ZrO2樣品,會隨著攙入雜質濃度增加,使晶體中單斜體結構減少。
在熱發光實驗中,分別以x光或紫外光當激發光源時,觀察到無論是主材料ZrO2還是攙入Yb2O3或Lu2O3雜質的ZrO2樣品其主要的熱發光峰都在105 ℃,而發光峰的強度會隨著攙入Yb2O3或Lu2O3的雜質濃度增加而減低。若攙入Yb2O3或Lu2O3雜質於ZrO2樣品時,會在145 ℃出現一個明顯的熱發光峰,但這個熱發光峰強度和雜質濃度並沒有呈現線性的關係。
光發光實驗中,分別以光子能量為3 keV的x光及能量為3.76 eV的紫外光當激發光源時,主材料ZrO2和攙入Yb2O3或Lu2O3雜質的ZrO2樣品會在波長為400-600 nm的偏藍色可見光放射帶中出現460 nm及510 nm的光放射光峰。放射帶的形成可能是氧的空位和天然雜質Ti4+在ZrO2裡所造成的非對稱性配位結構有關。且都以主材料ZrO2的放射光強度較攙有Yb2O3或Lu2O3雜質的放射光強度大。
以Zr的LⅢ吸收近邊緣能量激發ZrO2樣品研究螢光吸收和熱發光,由實驗觀察到在接近Zr-LⅢ邊緣的能量吸收趨於激發螢光,而對於熱發光卻有減少的現象,因此判斷螢光和燐光吸收是有相競爭的現象。且由延伸X光吸收微細結構的光譜(EXAFS),得知樣品裡晶體排列結構基本非常相似,但是攙有Yb2O3雜質的ZrO2樣品會比攙有Lu2O3雜質的ZrO2樣品在晶體排列結構中多出Yb-O-陽離子這一層排列,而這是由於Yb3+或Zr4+離子插入到O2-離子中所形成的。
Abstract
Thermoluminescence (TL) and x-ray excited fluorescence of zirconia (ZrO2) doped with impurities of Yb2O3 and Lu2O3 have been investigated. The experimental results from XRD show that the undoped ZrO2 sample has more composition of monoclinic phase than the doped Yb2O3 and doped Lu2O3 in ZrO2 samples.
All the samples have the main TL peak at 105℃ and small TL peaks at around 195℃, when they were irradiated by the UV and x-ray. But the doped zirconia samples have the obvious TL peak at 145℃.However, from the PL, a wide emission band extending from 400 to 600 nm was observed, and the two maximum peaks appeared at around 460 and 510 nm not only for the undoped ZrO2 but also for the doped ZrO2.
For studying the x-ray absorption near Zr LⅢ-edge in ZrO2 sample, by comparing the fluorescence with thermoluminescence, we observed the fluorescence was increased abruptly, but the thermoluminescence was decreased near the Zr LⅢ-edge. Which could be explained that the fluorescence and phosphorescence were competitive when the x-ray absorption near the Zr LⅢ-edge.
參考文獻
Arsenev P. A., Bardasarov Kh. S., Niklas A., and. Ryazantsev A. D., “X-ray and thermostimulated luminescence of 0.9 ZrO2-0.1 Y2O3 single crystal”, Phys. Stat. Sol. (a), 62, 395-398 (1980).
Bettinal C., Ferraresso G., and Manconi J. W., “Thermoluminescence of ZrO2”, J. Chem. Phys, 50, 9, 3957-3961 (1969).
Block S., Da Jornada J. A. H., Piermarini G. J., “Pressure-temperature phase diagram of zirconia”, J. Am. Ceram. Soc., 68, 9, 497-499 (1985).
Chan R. W., Davis E. A., and Ward I. M., Thermoluminescence of solid, Cambridge University Press, England (1985).
Emura S., Moriga T., Takizawa J., Nomura M., Bauchspiess K. R., Murata T., Harada K., and Maeda H., ”Optical-luminescence yield spectra produced by x-ray excitation”, Phys. Rev B. 47, 6918-6930 (1993).
Harrison D. E., Melamed N. T., and Subbarar E. C., ”A new family of self-activated phoserphors”, J. Electrochem. Soc., 110, 1, 23-28 (1963).
Hsieh W. C.and Su C. S., ”Thermoluminescence in ZrO2 with impurity of ZnO induced by UV radiation”, Appl. Phys. A, 58, 459-465 (1994).
Hsieh W. C ., and Su C. S., “UV induced thermoluminescence in ZrO2 doped by Er2O3”, J. Appl. Phys D, 27, 1763-1768 (1994).
Humboldt W. L., An introduction to luminescence of solids, John Wiley & Sons. Inc., New York (1950).
Johns H. E., and Cunninghan J. R., The physics of radiology, 4th ed, Charles C. Thomas, Illinois (1983).
Kitai A. H., Solid state luminescence, 1sted, Kitai, Canada (1993).
Kirsh Y., and Townsend P. D.,”Electron and hole centers produced in zircon by x-irradiation at room temperature”, J. Phys. C: Solid State Phys, 20, 967 (1987).
Knoll G. F., Radiation detection and measurement, 2nd ed, John Wiley & Sons, New York (1989).
Koningsberger D. C., and Pins P., X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, 1st ed, John Wiley, New York (1988).
Lai L. J., and Su C. S., “Thermoluminescence in ZnO doped ZrO2 induced by 2.5-9 keV x-ray synchrotron radiation”, J. Appl. Phys, 87, 1, 236-240 (2000).
Lai L. J.,and Su C. S., ”Luminescence excitation and near edge x-ray absorption Spectra of Er2O3 dopant on zirconia ceramics”, Mater. Chem. Phys, 62, 148-152 (2000).
Li P., Chen I.-Wei., and PennerHahn J. E., ”X-ray-absorption studies of zirconia polymorphs. Ⅰ. Characteristic local structures”, Phys. Rev B, 48, 14, 10063-10073 (1993).
Mahesh K., Weng P. S., and Furetta C., Thermoluminescence solids and its applications, Ashford, Kent, England (1989).
Sarver J. F., “Preparation and luminescent properties of Ti-activated zirconia”, J. Electrochem. Soc., 113, 2, 124-128 (1966).
Stevens. R., Zirconia and zirconia ceramics, 2nd ed, R. Stevens, United Kingdom (1986).
Weast C., and Astle. M. J., CRC handbook of chemistry and physics, 61st ed, F-217 (1981).
Willard H. H., Merritt L. L., Dean J. A., and Settle F. A., Instrumental methods of analysis, Litton Educational Publishing, Inc, 6th, Taiwan (1981).
Yoshida T.,. Tanaka T, Yoshida, Hikita S., Baba T., Ono Y., ”EXAFS study of Yb species encapsulated in potassium Y-type zeolite”, Solid State Communications, 114, 255-259 (2000).
李志甫,”x光吸收光譜術在觸媒特性分析上的應用”,化學專題報導,期刊53,280-293 (1995)。
許樹恩,吳泰伯,”x光繞射原理與材料結構分析”,中國材料科學學會出版,台北市 (1996)。
賴麗珍,”對攙有ZnO和Er2O3雜質的二氧化鋯材料經UV和x光激發之發光現象研究”,國立清華大學原子科學研究所博士論文,新竹市 (1999)。