簡易檢索 / 詳目顯示

研究生: 賈立凱
Chia, Li-Kai
論文名稱: 以紅外光光譜儀定量真空中鋁合金表面的水氣吸附
Quantification of water vapor adsorption on aluminum surface by using the FT-IR method
指導教授: 陳俊榮
Chen, June-Rong
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 103
中文關鍵詞: 紅外光光譜儀水氣鋁合金表面吸附
外文關鍵詞: FT-IR, Water vapor, Aluminum surface, Adsorption
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討:(1)鋁合金樣品表面冰膜厚度的定量以及(2)水氣在鋁合金樣品表面吸附與脫附現象的研究,而在實驗中亦進行水氣氣壓讀值的校正,以確認定量上的準確性。
    實驗系統以偏振調制紅外光譜儀為主,分析在不同氣壓下,鋁合金樣品表面的水氣吸附量。在水氣氣壓讀值的校正的實驗結果方面,定出了電容真空計、對流真空計以及水銀真空計對水氣氣壓的讀值誤差及修正因子。在鋁合金樣品表面冰膜厚度的定量實驗中,則是利用液態氮冷卻鋁合金樣品,搭配氣體動力學的公式計算,得到吸附在樣品表面的水分子層層數,而將紅外光光譜的訊號強度,換算水分子層數。
    在鋁合金樣品表面水氣吸附與脫附現象的實驗中,則透過前述的兩個實驗結果,得到在真空腔內曝入水氣到飽和蒸氣壓的過程,其吸附等溫線屬於吸附等溫線的第二型,也就是BET多層吸附的模型。證明水氣在鋁合金樣品表面會有多層吸附的行為,而在飽和蒸氣壓時,在鋁合金樣品表面的水分子層,約有67層的水分子。在水氣由高氣壓往低氣壓進行的脫附過程中,鋁合金樣品表面所吸附的水分子量,多於吸附過程(由低氣壓往高氣壓進行)的水分子量,而呈現出遲滯現象。


    中文摘要---------------------------------------------------i 英文摘要--------------------------------------------------ii 誌謝-----------------------------------------------------iii 目錄------------------------------------------------------iv 表目錄---------------------------------------------------vii 圖目錄--------------------------------------------------viii 第一章、引言-----------------------------------------------1 第二章、原理及文獻回顧-------------------------------------5 2.1.水分子的結構------------------------------------5 2.2.水分子與材料表面的作用--------------------------6 2.2.1.物理吸附------------------------------------6 2.2.2.化學吸附------------------------------------7 2.3.紅外光與水分子的共振----------------------------8 2.4.真空計原理--------------------------------------9 2.4.1.電容真空計原理------------------------------9 2.4.2.對流式真空計原理----------------------------9 2.4.3.U型水銀真空計原理--------------------------10 2.5.傅利葉轉換紅外光光譜儀-------------------------10 2.6.偏振調制紅外光反射吸收法-----------------------11 2.7.文獻回顧---------------------------------------13 2.7.1.吸附等溫線---------------------------------13 2.7.2.水氣在鋁表面的吸附現象與吸附量的測量-------15 第三章、實驗系統與實驗步驟--------------------------------18 3.1.實驗系統---------------------------------------18 3.1.1.水氣氣壓讀值校正系統-----------------------18 3.1.2.傅立葉轉換紅外光光譜儀---------------------19 3.1.3.光彈偏振調變光路---------------------------22 3.1.4.真空系統-----------------------------------24 3.2.實驗樣品製備-----------------------------------26 3.2.1.樣品製造-----------------------------------26 3.2.2.臭氧水清洗---------------------------------27 3.3.實驗步驟---------------------------------------27 3.3.1.水氣氣壓校正實驗---------------------------27 3.3.1.1.水氣氣壓校正系統實驗-------------------27 3.3.1.2.紅外光分析腔曝入水氣實驗---------------28 3.3.2.示波器校正光彈調制儀-----------------------29 3.3.3.鋁合金樣品表面的冰膜厚度的定量實驗---------30 3.3.4.水氣在鋁合金表面的吸附與脫附的實驗---------30 第四章、實驗結果與討論------------------------------------32 4.1.水氣氣壓讀值校正-------------------------------32 4.2.鋁合金樣品表面的冰膜厚度的定量-----------------36 4.3.水氣在鋁合金表面的吸附與脫附現象---------------42 第五章、結論----------------------------------------------46 5.1.結論-------------------------------------------46 5.2.未來方向---------------------------------------47 參考文獻--------------------------------------------------49 表--------------------------------------------------------53 圖--------------------------------------------------------60

    1. F. Wilczek, “Did the Big Bang boil? ”, Nature 443, 637-638 (2006).
    2. D. J. Wang, J. R. Chen, G. Y. Hsiung, J. G. Shyy, J. R. Huang, S. N. Hsu, K. M. Hsiao, and Y. C. Liu, “Vacuum chamber for the wiggler of the Taiwan Light Source at the Synchrotron Radiation Research Center” , J. Vac. Sci. Technol. A 14(4) , 2624 (1996).
    3.呂登復編,實用真空技術。黎明書局,新竹(1998).
    4. P. Danielson, “A Journal of Practical and Useful Vacuum Technology”, The Vacuum Lab, Ch.24, (2002).
    5. J. P. Hobson, “Fifty years of vacuum science”, J. Vac. Sci. Technology. A 21( 5), S7-S11(2003).
    6. J. F. O'Hanlon and J.J. Shieh, “Reduction of water aerosol contamination during pumping of a vacuum chamber from atmospheric pressure” , J. Vac. Sci. Technol. A 9 (5), 2802-2807 (1991).
    7. H. F. Dylla, D. M. Manos and P. M. LaMarche, “Correlation of outgassing of stainless and aluminum with various surface treatments”, J. Vac. Sci. Technol. A 11, 2623 (1993).
    8.熊高鈺、詹哲鎧、張進春、陳慶隆、陳彥斌、許憲能、薛心白、陳俊榮,“同步加速器台灣光子元超高真空系統設計” 真空科技 21(3-4) , 12-19 (2008).
    9.陳俊榮,“從台灣光子源建造談及加速器技術發展”,真空科技21(3-4) , 6-11 (2008).
    10. N. C. Balchin, “ The friction of clean metals immerse in liquid sodium”, Br. J. Appl. Phys.13, 564-569 (1962).
    11.莊立瑋,“分析鋁合金材料表面經水氣暴露及臭氧水處理之二次離子質譜分析”,碩士論文,國立清華大學原子科學系,(1998).
    12.陳志敬,“鋁合金表面水釋氣之研究”,碩士論文,國立清華大學原子科學系,(2000).
    13.葉家瑋,“建立紅外光分析系統以探討真空中水氣的現象”,碩士論文,國立清華大學原子科學系,(2007).
    14.劉文峰,“利用紅外光光譜儀探討真空中水氣吸附現象”,碩士論文,國立清華大學生醫工程與環境科學系,(2008).
    15.蘇宏銘,“以核反應法分析真空中水氣吸附之研究”,碩士論文,國立清華大學生醫工程與環境科學系,(2008).
    16. H.Cavendish, “Three Papers, Containing Experiments on Factitious Air, by the Hon. Henry Cavendish, F. R. S.”, Phil. Trans. 56, 141-184 (1766).
    17. John Dalton, “A New System of Chemical Philosophy”, Henderson & Spalding, London, (1808) pp29.
    18. Amedeo Avogadro, “Essay on a Manner of Determining the Relative Masses of the Elementary Molecules of Bodies, and the Proportions in Which They Enter into these Compounds”, Journal de Physique 73, 58-76 (1811).
    19. A. Zangwill,“Physics at surfaces”, Cambridge University Press, USA (1988) pp185-186.
    20. Hans Lüth,“Solid Surfaces,interfaces and Thin Films ”, 4th edition Springer –Verlag, Germany (2001) pp 506.
    21. A. P. Fu, T. C. Feng, T. M. Tu, T.H. CHENG, “The Quantum chemical study of water molecule adsorbed on Al(111) surface Chinese”, Journal of Chemical Physics 13 (1), 49-45 (2000).
    22. Z. Luo, Y. Fang and J.J. Yao, “A New Approach for Non-destructive Detection of Dye Molecules by Combination of Terahertz Time-domain Spectra and Raman Spectra”, Trends in Applied Sciences Research 2(4), 295-303 (2007).
    23. V. P. Tolstoy, I. V. Chernyshova, ”Handbook of infrared spectroscopy of ultrathin films”, John Wiley & Sons Inc, Canada, ( 2003) pp12.
    24. J. F. O'Hanlon, “A user's guide to vacuum technology” 3 ed, A John Wiley & Sons Inc, Hoboken (2003) pp 83-86.
    25. P. Biltoft, M. Benapfl, and Swain, “Vacuum Technology 60A & 60B” Las Positas College , California, (2002) p7.
    26. G. L. Weissle, R. W. Carlson, “Vacuum physics and technology”, Academic Press Inc , London, (1976) pp36.
    27. A. A. Michelson,“Recent advances in spectroscopy”, Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam (1967).
    28. E.Y. Jiang, “Advanced FT-IR Spectroscopy”, Thermo Electron Corporation , USA, Chapter 1, (2004).
    29. T. Buffeteau, B. Desbat and J.M. Turlet,“Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films :procedure and quantitative analysis”, Applied Spectroscopy 45, 380 (1991).
    30. R.Corn, “Rapid-scan Polarization-modulated Fourier-transform Infra-red Reflection Absorption Spectroscopy”, Applications News for Users of Photoelastic Modulators, 1-4 (1996).
    31. R.G. Greenler,“Infrared study of adsorbed molecules on metal surface by reflection techniques”, J. Chem. Phys.44(1), 310 (1966)
    32. S. J. Gregg and K. S. W. Sing, “Adsorption, surface area and porosity”, 2ed, Academic Press, London, (1982) p4.
    33. S. Brunauer, L. S. Deming,W. E. Deming, E. Teller, “On a Theory of the van der Waals Adsorption of Gases”, J.Am.Chem.Soc. 62, 1723 (1940).
    34. Hind A. Al-Abadleh and V. H. Grassian , “FT-IR Study of Water Adsorption on Aluminum Oxide Surfaces”, Langmuir 19 (2), 341–347 (2003).
    35. J. Paul and F. M. Hoffmann, “Decomposition of H2O on Clean and Oxidized Al(100)”, J.Phys.Chem. 90, 5321-5324(1986).
    36. S. J. Bushby, B.W. Callen, K. Griffiths, F. J. Esposto, R. S. Timsit and P. R. Norton, “Associative versus dissociative adsorption of water on Al(100) ”, Surface Science Letters 298, 1181-1190(1993).
    37. K. Griffiths, R. V. Kasza, F. J. Esposto, B. W. Callen, S. J. Bushby and P. R. Norton, “Infra-red behaviour of sub-monolayer coverages of water on metal surfaces”, Surface Science 307-309, 60-64 (1994).
    38. M.A. Zondlo, T. B. Onasch, M.S. Warshawsky, and M.A. TolbertGovind Mallick, P. Arentz, and M. S. Robinson, “Experimental Studies of Vapor-Deposited Water−Ice Films Using Grazing-Angle FTIR-Reflection Absorption Spectroscopy” , J. Phys. Chem. B, 101 (50), 10887-10895 (1997).
    39. S. Debnath, E. Jiang, J. Coffin, “Performance Characteristics of the Advanced ETC EverGlo IR Source ”, Application Note: 50718, Thermo Fisher Scientific Company, Madison, WI, USA(2007).
    40. P. Norton, “HgCdTe infrared detectors”, Opto-Electronics Review 10, 159 (2002).
    41. K. Wada, “Safety of Windowns and Prims Used in FTIR”, FTIR Talk Letter 11, 2-4 (2009).
    42. C. K. Chan, G .Y. Hsiung, C. C. Chang, R. Chen, C .Y. Yang, C. L. Chen, H .P. Hsueh, S. N. Hsu, Ivan Liu, J. R. Chen “Cleaning of Aluminium Alloy Chambers with Ozonized Water”, Journal of Physics: Conference Series 100, 1-4 (2008).
    43. C. Antoine, “Tensions des vapeurs; nouvelle relation entre les tensions et les températures”, Comptes Rendus des Séances de l'Académie des Sciences 107, 684 (1888).
    44. S.Van Gils, H.Terryn, E.stijn, G.E.Thompson, M.R.Alexander, “In-Situ Measurement of Oxide Film Growth on Aluminum Using PM-IRRAS”, ATB Métallurgie. 43, (1-2) 358-363 (2003).
    45. D. E. Brown, S. M .George, C.Huang, E. K. L.Wong, K. B.Rider, R. S.Smith, B. D .Kay, “H2O Condensation Coefficient and Refractive Index for Vapor-Deposited Ice from Molecular Beam and Optical Interference Measurements ,”J. Phys. Chem. 100, 4988-4995 (1996).
    46. G. E. Ewing, “Thin Film Water”, J.Phys.Chem.B. 108 (41), 15953-15961 (2004).
    47. S. Yu. Venyaminov, F. G. Prendergast, “Water (H2O and D2O) Molar Absorptivity in the 1000–4000 cm-1 Range and Quantitative Infrared Spectroscopy of Aqueous Solutions”, Analytical Biochemistry 248, 234–245 (1997).
    48. C. Pierce, “ Computation of Pore Sizes From Physical Adsorption Data“, J.Phys.Chem. 57, 149 (1953).
    49. J. P. Joly, F.Gaillard, E. Peillex, M. Romand, “ Temperature-programmed desorption (TPD) of water from iron, chromium, nickel and 304L stainless steel”, Vacuum 59, 854-867 (2000).
    50. M.D. Sastry, Sandesh N. Mane, Mahesh P. Gaonkar, H. Bagla, J. Panjikar1 and K.T. Ramachandran, “Evidence of colour-modification induced charge and structural disorder in natural corundum : Spectroscopic studies of beryllium treated sapphires and rubies”, Materials Science and Engineering 2,1-4 (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE