簡易檢索 / 詳目顯示

研究生: 徐靖雯
論文名稱: Bray-Curtis指標與其他相似性指標之模擬探討
The Simulation Study of Bray-Curtis Index and Other Similarity Indices
指導教授: 趙蓮菊
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 65
中文關鍵詞: 相似性指標生物多樣性
外文關鍵詞: Bray-Curtis, similarity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生物多樣性的研究領域裡,bata多樣性指標主要是用來衡量兩個以上不同群落之間生物的相異度,我們可以利用不同群落之間的共同種(shared species)和特有種(endemic species)定義一些指標來做為量度的標準。在文獻中有許多量度的指標被提出,包括Jaccard出現指標及豐富指標、Sørensen出現指標及豐富指標、Lennon出現指標及豐富指標、Morisita指標以及Bray-Curtis相似性指標等等。
    本文主要針對Bray-Curtis相似性指標進行討論,內容可以分為三部分,第一部分就Bray-Curtis指標的定義及原始估計量來做探討,以其一階期望值來推測原始估計量對真實指標值的估計情形,再經由模擬此估計量對真實指標值的估計情形,是否如其一階期望值所預期的結果。第二部分針對Bray-Curtis原始估計量會受到抽樣比例所影響,以模擬方式比較其他相似性估計量是不是也有相同的表現。最後則是以模擬方式探討在各種不同的假設條件下,群落中物種的相對豐富度所服從的結構,對於估計量的表現情形之影響。


    第一章 緒論 1 第二章 符號介紹與相似性指標之文獻回顧 4 2.1 符號說明及模式 4 2.1.1 符號說明 4 2.1.2 模型假設及抽樣方法 5 2.2 相似性指標相關文獻回顧 5 2.2.1 出現指標 6 2.2.2 豐富指標 8 第三章 Bray-Curtis指標與其估計量之探討 13 3.1 Bray-Curtis原始估計量 之探討 13 3.1.1 原始估計量期望值的近似值 13 3.1.2 原始估計量的一階期望值 14 3.2 原始估計量的偏誤 14 3.3 在兩群落種類數相同且分佈相同時,固定選取的樣本個體總數17 第四章 電腦模擬試驗 19 4.1 模擬條件與結構介紹 19 4.2 各相似性指標估計量的表現情形 20 4.2.1 兩群落之豐富度服從相同分佈 20 4.2.2 兩群落之豐富度服從不同分佈 28 4.3 Bray-Curtis指標估計量的模擬與討論 34 4.3.1 優勢種對Bray-Curtis指標的影響 34 4.3.2 共同種的相對豐富度總和對Bray-Curtis指標的影響 35 第五章 結論 41 附錄 43 參考文獻 63

    Bannister, P. (1968), “An Evaluation of Some Procedures Used in Simple Ordinations,” The Journal of Ecology 56, 27-34.

    Bray, J.R. and Curtis, J.T. (1957), “An Ordination of the Upland Forest Assemblages of Southern Wisconsin,” Ecological Monograph 27, 325-349.

    Cao, Y., Hawkins, C.P. and Storey A.W. (2005), “A method for measuring the comparability the of different sampling methods used in biological surveys: implications for data integration and synthesis,” Freshwater Biology 50, 1105-1115.

    Chao, A. and Lee, S-M. (1992), “Estimating the number of classes via sample coverage,” Journal of the American Statistical Association 87, 210-217.

    Chao, A., Hwang, W-H., Chen, Y-C. and Kuo C-Y. (2000), “Estimating the number of shared species in two communities,” Statistica Sinica 10, 227-246.

    Chao, A., Chazdon, R.L., Colwell, R.K. and Shen, T-J. (2005), “A new statistical approach for assessing similarity of species composition with incidence and abundance data,” Ecology Letters 8, 148-159.

    Chao, A., Chazdon, R.L., Colwell, R.K. and Shen, T-J. (2006), “Abundance-Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples,” To appear in Biometrics.

    Clarke, K.R. and Warwick, R.M. (2001), “A further biodiversity index applicable to species lists: variation in taxonomic distinctness,” Marine Ecology progress Series, 216, 265-278.
    Colwell, R.K., Mao, C.X. and Chang, J. (2004), “Interpolation, extrapolating, and comparing incidence-based species accumulation curves,” Ecology 85, 2717-2727.

    Ellingsen, K. and Gray, J.S. (2002), “Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf,” Journal of Animal Ecology 71, 373-389.

    Gauch H.G., Jr. (1973), “A Quantitative Evaluation of the Bray-Curtis Ordination,” Ecology 54, 829-836.

    Horn, H.S. (1966), “Measurement of overlap in comparative ecological studies,” American Naturalist 100, 419-424.

    Jaccard, P. (1908), “Nouvelles recerches sur la distribution florale,” Bull. Soc. Vaudoise Sci. Nat. 44, 223-270.

    Lennon, J.J., Koleff, P., Greenwood, J.J.D. and Gaston, K.J. (2001), “The geographical structure of British bird distribution: diversity, spatial turnover and scale,” Journal of Animal Ecology 70, 966-979.

    Lindegarth, M. (2001), “Assemblages of animals around urban structures: testing hypotheses of patterns in sediments under boat-mooring pontoons,” Marine Environmental Research 51, 289-300.

    Marshall, S. and Elliott, M. (1997), “A comparison of univariate and multivariate numerical and graphical techniques for determining inter- and intraspecific feeding relationships in estuarine fish,” Journal of Fish Biology 51, 526-545.

    Magurran, A.E. (2004), Measuring Biological Diversity. Blackwell, Oxford.

    Morisita, M. (1959), “Measuring of interspecific association and similarity between communities,” Memoirs of the Faculty of Science, Kyushu Univ., Series E (Biology) 3, 215-235.

    Qian, S.S., King, R.S. and Richardson, C.J. (2003), “Two statistical methods for the detection of environmental thresholds,” Ecological Modelling 166, 87-97.

    Sørensen, T. (1948), “A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons,” Biol. Skr. (K. Danske Vidensk. Selsk. NS), 5, 1-34.

    Stevens, T. (2005), “Scales of similarity in soft sediment epibenthic assemblages: implications for marine protected area design,” Marine Biology 146, 345-354.

    Whitman, R.L., Nevers, M.B., Goodrich, M.L., Murphy, P.C. and Davis, B.M. (2004), “Characterization of Lake Michigan coastal lakes using zooplankton assemblages,”

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE