研究生: |
梁志瑋 Liang, Chih-Wei |
---|---|
論文名稱: |
完整編碼抗雜訊干擾反及閘型唯讀記憶體 The Full Code-pattern Coverage Noise Immunity NAND-type ROM |
指導教授: |
張孟凡
Chang, Meng-Fan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 114 |
中文關鍵詞: | 串音干擾 、反及閘型唯讀記憶體 |
外文關鍵詞: | Crosstalk, NAND-type ROM |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
NAND-type Read-Only-Memory (NAND-type ROM) is one of the nonvolatile memories and provides small size, low cost, large data storage capacity. The noise interference cause read failure, speed degradation and power consumption in NAND-type ROM. The dynamic source line charging is proposed to eliminate noises such as crosstalk effect, charge sharing and BL leakage in NAND-type ROM achieves full code pattern coverage. The gate leakage current can be suppressed with small area overhead in NAND-ROM cell array. The 256kb NAND-type ROM macro was implemented using 90nm logic process. Dynamic power and standby power can be reduced compare with conventional NAND-type ROM. The speed of proposed NAND-type ROM can improve 40.79%. The supply voltage of proposed scheme can be down to 0.31V.
目前很多可攜式的系統單晶片中,非揮發性記憶體被用於儲存系統程式和預存資料庫,為系統單晶片中的一部分。快閃記憶體有可靠度問題、需使用特殊記憶體製程,複雜度高,與先進製程有3~4代的製程差距。唯讀記憶體使用邏輯製程與其他製程相容性高,且唯一大儲存容量,小尺寸、低成本、低消耗功率,高速度操作的特性,是目前講求高速度的系統晶片不可或缺的基礎功能區塊。反及閘型唯讀記憶體的特點相較於反或閘型唯讀記憶體優點在於面積小、密度高、漏電流小,待機功率小,位元線上的負載與漏電流與碼無關,功率容易被預測。
因製程微縮,金屬線與金屬線之間的距離接近導致嚴重的串音干擾效應,探討在90奈米的製程之下解決位反及閘型唯讀記憶體位元線與位元線之間的雜訊干擾、電荷分享效應及位元線漏電流所導致讀取速度降低與讀取失敗。我們提出了動態源極充放電路可以消除傳統反及閘型唯讀記憶體所不能避免發生位元線與位元線之間的雜訊干擾,電荷分享效應與位元線漏電流影響,避免因為不同的儲存資料導致待機電流大幅度的變化,且不會造成延遲增加與短路電流的發生。
記憶體細胞陣列呈現的方式是以16個細胞為一個細胞串,每一個細胞串經由專屬的選擇電晶體連接到位元線,32個細胞串連接到位元線,512條位元線的細胞陣列完成16K×16的反及閘型細胞陣列來驗證位元線已消除雜訊干擾,使反及閘型唯讀記憶體讀取速度加快,操作功率消耗與待機功率降低且具有100%編碼覆蓋範圍與最低操作電壓可降至0.31V。
[1] Shum D., "Embedded nonvolatile memories," ASIC Proceedings. 4th International Conference, pp. 210 - 215, 2001.
[2] Stewart R. G., "High-density CMOS ROM arrays," Solid-State Circuits, IEEE Journal of, vol. 12, no. 5 pp. 502-506, 1977.
[3] Verma R., "Flash memory quality and reliability issues," International Workshop on Memory Technology, Design and Testing, pp. 32-36, 1996.
[4] Lee J., Sung-Soo Lee, et al., "A 90-nm CMOS 1.8-V 2-Gb NAND flash memory for mass storage applications," IEEE Journal of Solid-State Circuits, vol. 38, no. 11 pp. 1934-1942, 2003.
[5] Wei Cui and Siliang Wu, "Design of Small Area and Low Power Consumption Mask ROM," in Integrated Circuit Design and Technology, 2007. ICICDT '07. IEEE International Conference on, pp. 1-4, 2007.
[6] Okada M., Hotta Y., et al., "16Mb ROM design using bank select architecture," in Symposium on VLSI Circuits Digest of Technical Papers, pp. 85-86, 1988.
[7] Byung-Do Yang and Lee-Sup Kim, "A low-power charge-recycling ROM architecture," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 4 pp. 590-600, 2003.
[8] Mustapa M., Mohd-Yasin F., et al., "Low power ROM employing dynamic threshold-voltage MOSFET (DTMOS) technique," in IEEE International Conference on Semiconductor Electronics, pp. 103-107, 2008.
[9] Wang Alice and Chandrakasan Anantha, "180-mV Subthreshold FFT Processor Using a Minimum Energy Design Methodology," IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 310-319, Jan. 2005.
[10] Myeong-Eun Hwang, Raychowdhury A., et al., "A 85mV 40nW Process-Tolerant Subthreshold 8×8 FIR Filter in 130nm Technology," in IEEE Symposium on VLSI Circuits, pp. 154-155, 2007.
[11] Paul B. C., Fujita S., et al., "A ROM based low-power multiplier," in IEEE Asian Solid-State Circuits Conference, pp. 69-72, 2008.
[12] Paul B. C., Fujita S., et al., "ROM based logic (RBL) design: High-performance and low-power adders," in IEEE International Symposium on Circuits and Systems, pp. 796-799, 2008.
[13] Byung-Do Yang and Lee-Sup Kim, "A low-power ROM using charge recycling and charge sharing techniques," IEEE Journal of Solid-State Circuits, vol. 38, no. 4 pp. 641-653, 2003.
[14] Mingoo Seok, Hanson S., et al., "The Phoenix Processor: A 30pW platform for sensor applications," in IEEE Symposium on VLSI Circuits, pp. 188-189, 2008.
[15] Cuppens R. and Sevat L. H. M., "A 256 kbit ROM with serial ROM cell structure," IEEE Journal of Solid-State Circuits, vol. 18, no. 3 pp. 340-344, 1983.
[16] de Angel E. and Swartzlander E. E., Jr., "Survey of low power techniques for ROMs," in International Symposium on Low Power Electronics and Design Proceedings, pp. 7-11, 1997.
[17] Byung-Do Yang and Lee-Sup Kim, "A low power charge-recycling ROM architecture," in IEEE International Symposium on Circuits and Systems, pp. 510-513 vol. 4, 2001.
[18] P.Wong Ban, Mittal Anurag, et al., NANO-CMOS Circuit and Physical Design: John Wiley and Sons, 2005.
[19] Chen P., Kirkpatrick D. A., et al., Static Crosstalk-Noise Analysis For Deep Sub-Micron Digital Designs: Kluwer Academic Publishers, 2004.
[20] Sicard E. and Rubio A., "Analysis of crosstalk interference in CMOS integrated circuits," IEEE Transactions on Electromagnetic Compatibility, , vol. 34, no. 2 pp. 124-129, 1992.
[21] Meng-Fan Chang, Lih-Yih Chiou, et al., "A full code-patterns coverage high-speed embedded ROM using dynamic virtual guardian technique," IEEE Journal of Solid-State Circuits, vol. 41, no. 2 pp. 496-506, 2006.
[22] Takahashi H., Muramatsu S., et al., "A new contact programming ROM architecture for digital signal processor," in VLSI Circuits, 1998. Digest of Technical Papers. 1998 Symposium on, pp. 158-161, 1998.
[23] Tuminaro A., "A 400 MHz, 144 Kb CMOS ROM macro for an IBM S/390-class microprocessor," in IEEE International Conference on Computer Design: VLSI in Computers and Processors. ICCD '97. Proceedings., pp. 253-255, 1997.
[24] Kawagoe H. and Tsuji N., "Minimum size ROM structure compatible with silicon-gate E/D MOS LSI," IEEE Journal of Solid-State Circuits, vol. 11, no. 3 pp. 360-364, 1976.
[25] Kamuro S., Masaki Y., et al., "A 256K ROM fabricated using n-well CMOS process technology," IEEE Journal of Solid-State Circuits, vol. 17, no. 4 pp. 723-726, 1982.
[26] Meng-Fan Chang, Lih-Yih Chiou, et al., "Crosstalk-insensitive via-programming ROMs using content-aware design framework," IEEE Transactions on Circuits and Systems II: Express Briefs vol. 53, no. 6 pp. 443-447, 2006.
[27] P. J. and Uyemura, Introduction to VLSI Circuits and Systems, 2 ed.: Wiley &Sons, 2002.
[28] H. N., Weste E., et al., CMOS VLSI Design A Circuits and Systems Perspective, 3 ed.: Addison-Wesley, 2004.
[29] Takeuchi K., Satoh S., et al., "A negative Vth cell architecture for highly scalable, excellently noise immune and highly reliable NAND flash memories," in VLSI Circuits, 1998. Digest of Technical Papers. 1998 Symposium on, pp. 234-235, 1998.
[30] Mingoo Seok, Hanson S., et al., "Robust ultra-low voltage ROM design," in Custom Integrated Circuits Conference, pp. 423-426, 2008.
[31] Haraszti T. P., "Novel circuits for high speed ROMs," IEEE Journal of Solid-State Circuits, vol. 19, no. 2 pp. 180-186, 1984.
[32] Xiaoliang Bai and Dey S., "High-level crosstalk defect Simulation methodology for system-on-chip interconnects," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 9 pp. 1355-1361, 2004.
[33] Kahng A. B., Muddu S., et al., "On switch factor based analysis of coupled RC interconnects," in Design Automation Conference Proceedings 37th, pp. 79-84, 2000.
[34] Hirose K. and Yasuura H., "A bus delay reduction technique considering crosstalk," in Design Automation and Test in Europe Conference and Exhibition 2000. Proceedings, pp. 441-445, 2000.
[35] Tanaka Tomoharu, Tanaka Yoshiyuki, et al., "A Quick Intelligent Page-Programming Architecture and a Shielded Bitline Sensing Method for 3V-Only NAND Flash Memory," IEEE Journal of Solid-State Circuits, vol. 29, no. 11, 1994.
[36] Redeker M., Cockburn B. F., et al., "An investigation into crosstalk noise in DRAM structures," in IEEE International Workshop on Memory Technology Design and Testing Proceedings, pp. 123-129, 2002.
[37] Yamaoka K., Iwanari S., et al., "A 0.9-V 1T1C SBT-based embedded nonvolatile FeRAM with a reference voltage scheme and multilayer shielded bit-line structure," IEEE Journal of Solid-State Circuits, vol. 40, no. 1 pp. 286-292, 2005.
[38] Hsu S. K., Agarwal A., et al., "A 9GHz 320×80bit Low Leakage Microcode Read Only Memory in 65nm CMOS," in Solid-State Circuits Conference, 2006. ESSCIRC 2006. Proceedings of the 32nd European, pp. 299-302, 2006.
[39] Turier Arnaud, Ammar Lotfi Ben, et al., "Architecture of low-power embedded ROMs," in International Symposium on IC Technology System and Applications Proceedings, 1999.
[40] Shengqi Yang, Wolf W., et al., "Accurate stacking effect macro-modeling of leakage power in sub-100 nm circuits," in International Conference on VLSI Design, 2005. 18th, pp. 165-170, 2005.