簡易檢索 / 詳目顯示

研究生: 張宇帆
Chang, Yu-Fan
論文名稱: 溶液製程高效率橘光磷光小分子有機發光二極體與轉印低功函數陰極製作高效率有機發光二極體
Solution-processed high efficiency orange phosphorescent small molecule organic light-emitting diodes and high efficiency organic light-emitting diodes by low work function cathode printing technique
指導教授: 洪勝富
Horng, Sheng-Fu
孟心飛
Meng, Hsin-Fei
口試委員: 洪勝富
孟心飛
冉曉雯
陳錦地
林皓武
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 111
中文關鍵詞: 有機發光二極體溶液製程多層結構橘光
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以溶液製程製作高效率橘光磷光小分子有機發光二極體,以小分子磷光主發光體CBP以及具雙極性傳輸之26DCzPPy摻雜改質之三重態金屬銥錯合物PO-01-TB,主、客發光體分散相當均勻,再搭配高傳輸效率之電洞傳輸材料,以純刮刀塗佈技術達到三層結構之有機發光二極體,電流效率最高可達41 cd/A,功率效率21 lm/W,亮度30,000 cd/m2。另外,以轉印的方式將低功函數陰極轉印至刮刀製程之有機發光二極體完成元件製作。陰極為PEG/Al組成之雙層結構製作在軟性基板PDMS上,在基板與陰極之間還加一層分子量1,200之犧牲層PS,加熱150 ℃使PS成熔融狀幫助陰極轉印至有機層,以這個製程製作之螢光綠光元件電流效率3.3 cd/A (1.1 %) ,亮度2500 cd/m2,綠光磷光元件電流效率為25 cd/A (8.2 %) 亮度達 3200 cd/m2,轉印陰極元件效率可達蒸鍍製程之70 %。


    The dissertation aims to develop all-solution-processed small molecule organic light-emitting diodes. The emissive layer contains a bipolar 4,4'-bis(carbazol-9-yl)biphenyl (CBP) host or 2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (26DCzPPy) and iridium(III) bis(4-(4-t-butylphenyl)thieno[3,2-c]pyridinato-N,C2')acetylacetonate (PO-01-TB) emitter with optimal weight ratio of 94:6 dissolved in chloroform. Uniform dispersion of iridium complex in polymer host poly(vinylcarbazole) is achieved. Tri-layer structure with hole transporting layer, host-guest emissive layer, and hole blocking layer is made by blade-only technique. Current efficiency of 41 cd/A, power efficiency of 21 lm/W, and luminance of 30,000 cd/m2 are achieved for orange-emitting device. The low work function cathode of blade-coated organic light-emitting diode is transferred from a soft polydimethylsiloxane (PDMS) mold by lamination without vacuum. The cathode is a bilayer of polyethylene glycol (PEG) (< 10 nm) and Al (100 nm) . A sacrificial layer of polystyrene with low Mw 1,500 and melting point of 120 ℃ is inserted between the cathode and PDMS for the subsequent mold removal at 150 ℃ by melting polystyrene. Current efficiency of 3.3 cd/A (1.1 %) and luminance of 2500 cd/m2 are achieved for green polyfluorene fluorescent emitter. 25 cd/A (8.2 %) and 3200 cd/m2 are achieved for green phosphorescent tris[2-(p-tolyl)pyridine]iridium(III) (Ir(mppy)3) emitter in polymer blend host. The efficiency is about 70 percent of the devices with thermally evaporated cathode.

    Chapter 1 緒論 1 1-1 前言 1 1-2 有機發光二極體之歷史發展 2 1-3 研究動機 2 1-4 論文架構 4 Chapter 2 有機發光二極體之基礎理論 5 2-1 有機材料的吸收與放射 5 2-2 電荷在有機分子間的傳遞 11 2-3 電荷從電極至有機層的注入 12 2-4 載子捕捉 (carrier trapping) 14 2-5 有機電激發光二極體之多層結構發光原理 15 Chapter 3 有機發光二極體之製程、量測以及材料簡介 18 3-1 有機發光二極體元件製作流程 18 3-1-1 陽極基板ITO玻璃做圖樣化的定義 18 3-1-2 有機發光二極體元件製作 21 3-2 有機發光二極體元件光電特性量測 26 3-3 純小分子有機發光二極體材料介紹 27 3-3-3 電洞注入材料(Hole Injection Material) 27 3-3-4 電動傳輸材料(Hole Transport Material) 28 3-3-5 主發光體材料(Host Material) 31 3-3-6 客發光體材料(Guest Material) 33 3-3-7 電子傳輸材料 34 Chapter 4 小分子有機發光二極體實驗結果與分析 35 4-1 實驗簡介與構想 35 4-2 純刮塗佈方式形成溶液製程多層結構 37 4-3 比較溶液製程與蒸鍍製程的表面 40 4-4 比較溶液製程與蒸鍍製程的元件特性 44 4-5 主動層溶液製程與蒸鍍製程交叉比對實驗 48 4-6 搭配不同主發光體之元件效率 54 4-7 主發光體26DCzPPy搭配不同電洞傳輸材料之元件特性表較 61 Chapter 5 轉印低功函數陰極製作有機發光二極體 68 5-1 轉印低功函數陰極製作有機發光二極體製作流程 68 5-1-1 製作PDMS 68 5-1-2 犧牲層聚苯乙烯(polystyrene,PS)成膜 69 5-1-3 蒸鍍金屬陰極 69 5-1-4 有機層塗佈流程 70 5-1-5 貼合並剝離 70 5-1-6 量測 70 5-2 轉印電極製作有機發光二極體製程所需之材料簡介 71 5-2-7 軟性基板 71 5-2-8 犧牲層 72 5-2-9 PEG 73 5-2-10 電洞傳輸材料 74 5-2-11 電子傳輸層材料 76 5-2-12 主發光體材料 77 Chapter 6 轉印電極製作有機發光二極體實驗結果分析 78 6-1 不同分子量的polystyrene製作犧牲層 79 6-2 搭配不同金屬陰極與不同製程方式對元件的影響 82 6-3 比較三層結構搭配不同轉印陰極的影響 87 6-4 比較綠光磷光元件使用陰極蒸鍍與轉印之元件表現 92 Chapter 7 結論 97 參考文獻 ………………………………………………………………………..98

    [1] 陳金鑫, 黃孝文,“OLED夢幻顯示器–OLED材料與元件”, 五南圖書.
    [2] C.W. Tang and S.A. VanSlyke, Appl.Phys.Lett. 51 (1987).
    [3] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay,
    R.H. Friend, P.L. Burns, and A.B. Holmes, Nature, 347, 539 (1990).
    [4] N. Rehmann, C. Ulbricht, A. Kohnen, P. Zacharias, M.C. Gather, D. Hertel, E. Holder, K. Meerholz, and U.S. Schubert, Adv. Mater. 20, 129 (2008).
    [5] Y, Tao, Q. Wang, C. Yang, K. Zhang, Q. Wang, T. Zou, J. Qin, and D. Ma,
    J.Mater.Chem. 18, 4091 (2008).
    [6] C. Huang, C.G. Zhen, S.P. Su, Z.K. Chen, X. Liu, D.C. Zou, Y.R. Shi, and
    K.P. Loh, J.Organomet.Chem. 694, 1317 (2009).
    [7] T. Tsuzuki and S. Tokito, Appl.Phys.Express 1, 021805 (2008).
    [8] S.Y. Huang, H.F. Meng* , H.L. Huang, T.C. Chao, M.R. Tseng*, Y.C. Chao, and S.F. Horng, Synth. Met., 160, 2393 (2010)
    [9] S.R. Tseng, H.F. Meng, K.C. Lee, S.F. Horng, Appl.Phys.Lett. 93, 153308(2008).
    [10] J.D. You, S.R. Tseng, H.F. Meng, F.W. Yen, I.F. Lin, S.F. Horng, Organic Electronics , 10, 1610 (2009).
    [11] M.A. Baldo, D.F.O' Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S.R. Forrest, NATURE, 395, 151 (1998)
    [12] M. Klessinger, J. Michl., VCH Publishers, (1995)
    [13] D.A. Skoog, J.J. Leary, Harcourt Brace College Publishers (1992)
    [14] M.A. Baldo, D.F. O'Brien, M.E. Thompson, S.R. Forrest, Phys.Rev.B., 60, 14422 (1999)
    [15] W.D.Gill, J.Appl.Phys., 43, 5033 (1972)
    [16] M.A. Lampert and P. Mark, Academic, (1970)
    [17] U. Wolf, V.I. Arkhipov, and H. Bassler, Phys.Rev.B, 59, 7505 (1999)
    [18] V.I. Arkhipov, U. Wolf, and H. Bassler, Phys.Rev.B, 59, 7514 (1999)
    [19] S. Barth, U.Wolf, H.Bassler, P.Muller, H.Riel , H.Vestweber, P.F. Seidler, W. Riess, Phys.Rev.B, 60, 8791 (1999)
    [20] M.Uchida, C.Adachi, T.Koyama, and Y.Taniguchi, J.Appl.Phys. 86, 1680 (1999)
    [21] S.R.Tseng, H.F.Meng, K.C.Lee, S.F.Horng, Appl.Phys.Lett. 93, 153308 (2008).
    [22] T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R. Daik, and W.J. Feast
    Appl.Phys.Lett., 75, 1679 (1999)
    [23] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl.Phys.Lett., 79, 156-158 (2001).
    [24] J.W. Kang, S.H. Lee, H.D. Park, W.I.Jeong, K.M. Yoo, Y.S. Park, and J.J. Kim Appl.Phys.Lett,. 90, 223508 (2007)
    [25] Y. Zheng, S.H. Eom, N. Chopra, J. Lee, F. So, and J. Xue, Appl.Phys.Lett., 92, 23301 (2008)
    [26] P. Strohriegl, J. V. Grazulevicius, Adv. Mater., 14, 20, (2002).
    [27] S.J. Su, H. Sasabe, T. Takeda, J. Kido, Chem. Mater., 20, 1691–1693(2008).
    [28] M. Stolka, J.F. Yanus, D.M. Pai, J.Phys.Chem., 88, 4707 (1984)
    [29] T. Yasuda, Y. Yamaguchi, D.C. Zou, T. Tsutsui, Jpn.J.Appl.Phy. Part 1, 41, 5626 (2002)
    [30] M. Nakamure, C. Yang, K. Tajima, and KR. Hashimoto, Sol. Energy Mater. Sol. Cell, 93, 1681 (2009)
    [31] B. A. Bailey, M.O. Reese, D.C. Olson, S.E. Shaheen and K. Kopidakis, Org. Electron., 12,108 (2011)
    [32] C. I Wu, G. R. Lee, and T.W Pi, Appl. Phys. Let., 87, 212108, (2005)
    [33] T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, and Y. S. Fu, Appl. Phys. Lett., 87,013504, (2005).
    [34] T. H. Lee, J. C. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, and Y. J. Hsu, Adv. Func. Mater., 18, 3036, (2008).
    [35] J. D. You, S. R. Tseng, H. F. Meng, F. W. Yen, I. F Lin, and S. F. Horng, Org. Electron., 10, 1610, (2009)
    [36] Z. Y. Liu, S. R. Tseng, Y. C. Chao, C. Y. Chen, H. F. Meng, S. F. Horng, Y. H. Wu, S. H. Chen, Synth. Met., 161, 426, (2011).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE